organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl­pyridinium hydrogen selenate

aLaboratoire de l'Etat Solide, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire de Matériaux et Cristallochimie, Département de Chimie, Faculté des Sciences, 2092 Campus Universitaire, Tunis, Tunisia
*Correspondence e-mail: maalej_wassim@yahoo.fr

(Received 15 April 2008; accepted 16 October 2008; online 22 October 2008)

The structure of the title salt, C12H12N+·HSeO4, consists of infinite parallel two-dimensional planes built of 4-benzyl­pyridinium and hydrogen selenate ions that are mutually connected by strong O—H⋯O and N—H⋯O hydrogen bonds. There are no contacts other than normal van der Waals inter­actions between the layers.

Related literature

For general background, see Fleck (2006[Fleck, M. (2006). Acta Cryst. E62, o4939-o4941.]); Baran et al. (2000[Baran, J., Śledź, M., Drozd, M., Pietraszko, A., Haznar, A. & Ratajczak, H. (2000). J. Mol. Struct. 526, 361-371.]). For related compounds, see: Ben Hamada & Jouini (2006[Ben Hamada, L. & Jouini, A. (2006). Mater. Res. Bull. 41, 1917-1924.]); Kaabi et al. (2004[Kaabi, K., Ben Nasr, C. & Rzaigui, M. (2004). J. Phys. Chem. Solids, 65, 1759-1764.]); Ben Djemaa et al. (2007[Ben Djemaa, I., Elaoud, Z., Mhiri, T., Abdelhedi, R. & Savariault, J. M. (2007). Solid State Commun. 142, 610-615.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N+·HSeO4

  • Mr = 314.19

  • Orthorhombic, P b c a

  • a = 27.449 (5) Å

  • b = 10.821 (6) Å

  • c = 8.830 (1) Å

  • V = 2623 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 289 (2) K

  • 0.11 × 0.09 × 0.04 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.743, Tmax = 0.894

  • 3179 measured reflections

  • 2817 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.045

  • 2 standard reflections frequency: 120 min intensity decay: 11%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.087

  • S = 0.98

  • 2817 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—HO3⋯O4i 0.82 1.89 2.617 (4) 148
N—HN⋯O2ii 0.95 (4) 1.82 (5) 2.762 (5) 168 (4)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound C6H5CH2C5H4NH+ HSeO4- crystallizes in the orthorhombic space group Pbca. Correspondingly, there are eight formula units per unit cell. The crystal is built up of monohydrogenselenate anions connected by hydrogen bonds of the O—H···O type forming infinite chains [HSeO4]nn- perpendicular to the [001] directions.

These chains are themselves interconnected by means of N—H···O hydrogen bonds originating from the [C6H5CH2C5H4NH]+ cation, so as to build a three-dimensional network. The distances Se—O in the [HSeO4]- anions range from 1.608 (3) to 1.705 (3) Å (Fig. 1). These values are comparable to reported data (Fleck, 2006). The longest Se—O(2) distance of 1.705 (3) Å, is due to the presence of the acidic hydrogen atom on the SeO4 tetrahedron (Baran et al., 2000).

The organic groups are located in the (011) planes at x = 1/4 and x = 3/4. The average values of the C—C, C—N and CC bond lengths of 1.5165 (6) Å, 1.3305 (6) Å and 1.3753 (6) Å in the [C6H5CH2C5H4NH]+ cation are similar to those observed in related compounds (Ben Hamada & Jouini, 2006; Kaabi et al., 2004; Ben Djemaa et al., 2007; Gowda et al., 2007). The C—C perpendicular interplanar distances range from 1.74 to 4.83 Å and the dihedral angle between two planes of rings is 67.04°, indicating the existence of strong van der Waals interactions by contacts between [C6H5CH2C5H4NH]+ cations.

All the hydrogen bonds (D—H···O, Table 1) and the van der Waals contacts give rise to a three dimensional network in the crystal structure.

Related literature top

For related literature, see Fleck (2006); Baran et al. (2000); Ben Hamada & Jouini (2006); Kaabi et al. (2004); Ben Djemaa et al. (2007); Gowda et al. (2007).

Experimental top

Crystals of the title compound C6H5CH2C5H4NH+ HSeO4- were prepared by slowly adding, at room temperature, an equimolecular proportion of H2SeO4 (1.9 cm3) to a solution of 4-benzyl pyridine (5 cm3). A crystalline precipitate was formed. After dissolving the precipitate by adding H2O, the solution is allowed to slowly evaporate at room temperature for several days until the formation of pink prismatic crystals with dimensions suitable for a crystallographic study occurs.

Refinement top

Hydrogen atoms at C6, C9 and O3 were positioned geometrically, with C—H = 0.93 Å and O—H = 0.82 Å, and were refined with Uiso(H) = 1.41Ueq of the corresponding parent atom. The other H atoms bound to C (cyclic and CH2) groups, and N atoms were located from the difference Fourier map, and refined with distance restraints of [C—H = 0.90 (4)–1.00 (5) Å and Uiso(H) = 0.06 (1)–0.10 (2) Å2, (cyclic groups)], [C—H = 0.88 (6)–1.00 (4) Å and Uiso(H) = 0.06 (1)–0.12 (2) Å2, (CH2 group)], and N—H = 0.95 (4) Å with Uiso(H) = 1.14Ueq(N) for NH bond.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of [C6H5CH2C5H4NH]+ [HSeO4]-.
[Figure 2] Fig. 2. Projection along the b axis of the crystal structure of [C6H5CH2C5H4NH]+ [HSeO4]-.
4-Benzylpyridinium hydrogen selenate top
Crystal data top
C12H12N+·HSeO4F(000) = 1264
Mr = 314.19Dx = 1.592 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 27.449 (5) Åθ = 14–16°
b = 10.821 (6) ŵ = 2.87 mm1
c = 8.830 (1) ÅT = 289 K
V = 2623 (2) Å3Prism, pink
Z = 80.11 × 0.09 × 0.04 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1486 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
Non–profiled ω/2θ scansh = 035
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.743, Tmax = 0.894l = 211
3179 measured reflections2 standard reflections every 120 min
2817 independent reflections intensity decay: 11%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.001
wR(F2) = 0.087Δρmax = 0.28 e Å3
S = 0.98Δρmin = 0.31 e Å3
2817 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 parametersExtinction coefficient: 0.0065 (3)
0 restraints
Crystal data top
C12H12N+·HSeO4V = 2623 (2) Å3
Mr = 314.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 27.449 (5) ŵ = 2.87 mm1
b = 10.821 (6) ÅT = 289 K
c = 8.830 (1) Å0.11 × 0.09 × 0.04 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1486 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.743, Tmax = 0.8942 standard reflections every 120 min
3179 measured reflections intensity decay: 11%
2817 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.28 e Å3
2817 reflectionsΔρmin = 0.31 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.568598 (14)0.68653 (3)0.34450 (4)0.04502 (15)
O10.53870 (10)0.8139 (2)0.3574 (4)0.0652 (8)
O20.53625 (10)0.5754 (2)0.2732 (4)0.0685 (9)
O30.61665 (10)0.7080 (3)0.2250 (4)0.0779 (10)
HO30.60650.72810.14110.11 (2)*
O40.59571 (11)0.6441 (3)0.4996 (3)0.0644 (8)
C10.22067 (18)0.5917 (5)0.6315 (6)0.0675 (14)
C20.21967 (19)0.6932 (5)0.5412 (7)0.0746 (15)
C30.25920 (19)0.7237 (5)0.4540 (6)0.0624 (13)
C40.30049 (14)0.6492 (4)0.4530 (4)0.0460 (10)
C50.30108 (17)0.5471 (4)0.5468 (6)0.0564 (12)
C60.26129 (17)0.5184 (4)0.6359 (6)0.0681 (14)
HC60.26210.44940.69880.061 (13)*
C70.3437 (2)0.6798 (6)0.3529 (6)0.0683 (14)
C80.38461 (14)0.7417 (4)0.4400 (4)0.0462 (10)
C90.38853 (17)0.8693 (4)0.4482 (5)0.0538 (11)
HC90.36620.91930.39770.046 (11)*
C100.42554 (19)0.9215 (5)0.5313 (6)0.0630 (13)
C110.45454 (18)0.7264 (5)0.5991 (6)0.0631 (13)
C120.41870 (17)0.6719 (5)0.5168 (6)0.0580 (12)
N0.45683 (14)0.8484 (4)0.6053 (5)0.0621 (11)
HC10.1926 (15)0.573 (4)0.690 (5)0.077 (15)*
HC20.1914 (18)0.742 (5)0.540 (6)0.102 (18)*
HC30.2621 (16)0.795 (4)0.388 (5)0.082 (16)*
HC50.3276 (13)0.498 (4)0.547 (4)0.058 (13)*
H1C70.334 (2)0.729 (6)0.280 (7)0.12 (2)*
H2C70.3573 (13)0.602 (4)0.309 (4)0.062 (14)*
HC100.4295 (16)1.006 (4)0.543 (5)0.090 (17)*
HC110.4786 (18)0.680 (4)0.661 (6)0.104 (19)*
HC120.4167 (16)0.587 (5)0.503 (5)0.087 (16)*
HN0.4820 (15)0.885 (4)0.664 (5)0.071 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.0483 (2)0.0418 (2)0.0450 (2)0.00559 (19)0.0005 (2)0.0042 (2)
O10.0665 (18)0.0466 (16)0.082 (2)0.0135 (15)0.0004 (18)0.0093 (17)
O20.0725 (19)0.0479 (17)0.085 (2)0.0001 (16)0.0203 (18)0.0108 (17)
O30.0505 (17)0.120 (3)0.063 (2)0.0120 (19)0.0084 (16)0.027 (2)
O40.093 (2)0.0568 (17)0.0429 (16)0.0089 (17)0.0115 (16)0.0017 (15)
C10.057 (3)0.070 (3)0.075 (4)0.022 (3)0.012 (3)0.016 (3)
C20.054 (3)0.075 (4)0.095 (4)0.005 (3)0.007 (3)0.004 (4)
C30.075 (3)0.055 (3)0.057 (3)0.002 (3)0.013 (3)0.008 (2)
C40.053 (3)0.048 (2)0.037 (2)0.019 (2)0.001 (2)0.0074 (19)
C50.055 (3)0.046 (3)0.068 (3)0.001 (2)0.007 (3)0.001 (2)
C60.084 (4)0.045 (3)0.076 (4)0.013 (2)0.016 (3)0.013 (3)
C70.077 (3)0.081 (4)0.047 (3)0.028 (3)0.010 (3)0.014 (3)
C80.053 (2)0.050 (2)0.036 (2)0.012 (2)0.011 (2)0.002 (2)
C90.060 (3)0.051 (2)0.050 (3)0.001 (2)0.002 (2)0.014 (2)
C100.072 (3)0.051 (3)0.066 (3)0.016 (3)0.014 (3)0.006 (3)
C110.055 (3)0.064 (3)0.071 (3)0.006 (3)0.008 (3)0.020 (3)
C120.062 (3)0.047 (3)0.066 (3)0.009 (2)0.011 (2)0.005 (3)
N0.045 (2)0.082 (3)0.059 (3)0.025 (2)0.0041 (19)0.000 (2)
Geometric parameters (Å, º) top
Se—O11.608 (3)C6—HC60.93
Se—O21.622 (3)C7—C81.518 (6)
Se—O41.625 (3)C7—H1C70.88 (6)
Se—O31.705 (3)C7—H2C71.00 (4)
O3—HO30.82C8—C121.381 (6)
C1—C21.358 (7)C8—C91.387 (6)
C1—C61.369 (7)C9—C101.375 (6)
C1—HC10.95 (4)C9—HC90.93
C2—C31.371 (7)C10—N1.338 (6)
C2—HC20.94 (5)C10—HC100.93 (5)
C3—C41.391 (6)C11—N1.323 (6)
C3—HC30.97 (4)C11—C121.358 (7)
C4—C51.381 (6)C11—HC111.00 (5)
C4—C71.515 (6)C12—HC120.93 (5)
C5—C61.382 (6)N—HN0.95 (4)
C5—HC50.90 (4)
O1—Se—O2112.56 (15)C4—C7—C8112.4 (4)
O1—Se—O4114.59 (15)C4—C7—H1C7109 (4)
O2—Se—O4111.61 (15)C8—C7—H1C7109 (4)
O1—Se—O3108.78 (16)C4—C7—H2C7109 (2)
O2—Se—O3106.51 (16)C8—C7—H2C7107 (2)
O4—Se—O3101.89 (16)H1C7—C7—H2C7110 (5)
Se—O3—HO3109.5C12—C8—C9117.8 (4)
C2—C1—C6120.1 (5)C12—C8—C7120.6 (4)
C2—C1—HC1118 (3)C9—C8—C7121.5 (5)
C6—C1—HC1122 (3)C10—C9—C8119.6 (4)
C1—C2—C3120.6 (5)C10—C9—HC9120.2
C1—C2—HC2119 (3)C8—C9—HC9120.2
C3—C2—HC2121 (3)N—C10—C9119.5 (4)
C2—C3—C4120.6 (5)N—C10—HC10117 (3)
C2—C3—HC3126 (3)C9—C10—HC10123 (3)
C4—C3—HC3113 (3)N—C11—C12119.3 (5)
C5—C4—C3118.0 (4)N—C11—HC11117 (3)
C5—C4—C7121.0 (4)C12—C11—HC11124 (3)
C3—C4—C7121.0 (5)C11—C12—C8121.1 (5)
C4—C5—C6120.8 (4)C11—C12—HC12123 (3)
C4—C5—HC5119 (3)C8—C12—HC12116 (3)
C6—C5—HC5121 (3)C11—N—C10122.6 (5)
C1—C6—C5119.8 (5)C11—N—HN118 (3)
C1—C6—HC6120.1C10—N—HN119 (3)
C5—C6—HC6120.1
C6—C1—C2—C30.2 (8)C4—C7—C8—C1285.0 (6)
C1—C2—C3—C42.0 (8)C4—C7—C8—C993.6 (6)
C2—C3—C4—C52.6 (7)C12—C8—C9—C100.1 (6)
C2—C3—C4—C7177.9 (4)C7—C8—C9—C10178.5 (4)
C3—C4—C5—C61.6 (7)C8—C9—C10—N1.1 (6)
C7—C4—C5—C6178.9 (4)N—C11—C12—C80.2 (7)
C2—C1—C6—C50.8 (8)C9—C8—C12—C110.8 (6)
C4—C5—C6—C10.0 (7)C7—C8—C12—C11177.8 (4)
C5—C4—C7—C878.7 (6)C12—C11—N—C101.1 (7)
C3—C4—C7—C8100.8 (6)C9—C10—N—C111.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O4i0.821.892.617 (4)148
N—HN···O2ii0.95 (4)1.82 (5)2.762 (5)168 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12N+·HSeO4
Mr314.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)289
a, b, c (Å)27.449 (5), 10.821 (6), 8.830 (1)
V3)2623 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.11 × 0.09 × 0.04
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.743, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
3179, 2817, 1486
Rint0.045
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 0.98
No. of reflections2817
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O4i0.821.892.617 (4)147.8
N—HN···O2ii0.95 (4)1.82 (5)2.762 (5)168 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

References

First citationBaran, J., Śledź, M., Drozd, M., Pietraszko, A., Haznar, A. & Ratajczak, H. (2000). J. Mol. Struct. 526, 361–371.  Web of Science CrossRef CAS Google Scholar
First citationBen Djemaa, I., Elaoud, Z., Mhiri, T., Abdelhedi, R. & Savariault, J. M. (2007). Solid State Commun. 142, 610–615.  CrossRef CAS Google Scholar
First citationBen Hamada, L. & Jouini, A. (2006). Mater. Res. Bull. 41, 1917–1924.  CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleck, M. (2006). Acta Cryst. E62, o4939–o4941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaabi, K., Ben Nasr, C. & Rzaigui, M. (2004). J. Phys. Chem. Solids, 65, 1759–1764.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds