metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,2-bis­­(di­methyl­phosphino)ethane-κ2P,P′]rhodium(I) di­chlorido[(1,2,5,6-η)-1,5-cyclo­octa­diene]rhodium(I)

aInstitut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany, and bDepartamento de Química Inorgánica y Analítica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
*Correspondence e-mail: steinborn@chemie.uni-halle.de

(Received 28 August 2008; accepted 8 October 2008; online 15 October 2008)

In the title complex, [Rh(C6H16P2)2][RhCl2(C8H12)], the asymmetric unit contains two [Rh(dmpe)2] [dmpe = 1,2-bis­(dimethyl­phosphino)ethane] half-cations, lying on inversion centers, and an [RhCl2(cod)] (cod = 1,5-cyclo­octa­diene) anion, wherein Rh is coordinated by two chloride ligands and two olefinic π-bonds of the cyclo­octa­diene ligand. The Rh atoms in the cations and anion exhibit square-planar coordination and are separated without any unusual inter­actions.

Related literature

For related literature, see: Fairlie & Bosnich (1987[Fairlie, D. P. & Bosnich, B. (1987). Organometallics, 7, 936-945.]); Wang et al. (2000[Wang, B., Cao, P. & Zhang, X. (2000). Tetrahedron Lett. 41, 8041-8044.]); Cao et al. (2000[Cao, P., Wang, B. & Zhang, X. (2000). J. Am. Chem. Soc. 122, 6490-6491.]). For a description of the Cambridge Structural Databsae, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C6H16P2)2][RhCl2(C8H12)]

  • Mr = 685.15

  • Triclinic, [P \overline 1]

  • a = 10.4972 (2) Å

  • b = 11.2873 (4) Å

  • c = 13.0884 (4) Å

  • α = 71.657 (3)°

  • β = 80.388 (2)°

  • γ = 68.346 (3)°

  • V = 1365.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 130 (2) K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction CCD Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.648, Tmax = 0.720

  • 40667 measured reflections

  • 8309 independent reflections

  • 6991 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.052

  • S = 1.01

  • 8309 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the asymmetric unit of the title complex, [Rh(dmpe)2][RhCl2(cod)], one anion, [RhCl2(cod)]-, and two halves of the cation, [Rh(dmpe)2]+, were found. Each of the two [Rh(dmpe)2]+ cations exhibited crystallogaphically imposed inversion symmetry with the rhodium atoms lying on the inverison centers. The anions and the cations are separated by normal van der Waals distances without unusual interactions (shortest distance between non-hydrogen atoms: C9···Cl2ii = 3.487 (2) Å, ((ii) -x + 1, -y + 1, -z + 1).

As expected for Rh(I) d8-complexes both the cations and the anions of the title complex exhibit a square-planar coordination of Rh. The primary coordination sphere of the [Rh(dmpe)2]+ cations is built up by four P atoms. The Rh—P bond lengths range from 2.6762 (4) (Rh1—P2) to 2.2819 (4) Å (Rh2—P4). Thus, they are relatively short compared to those in other fourfold P-coordinated Rh(I) complexes (median: 2.314 Å, lower/upper quartile: 2.289/2.342 Å, 68 observations taken from CSD version 1.10; Allen, 2002). Inspection of the torsion angles of the five-membered rings Rh1—P1—C3—C4—P2 and Rh2—P3—C9—C10—P4 exhibited conformations close to half chairs twisted on C3/C4 and C9/C10, respectively.

In the anion of the title complex, [RhCl2(cod)]-, the rhodium atom is fourfold coordinated by two chloro ligands and two olefinic π-bonds (C13/C14 and C17/C18) of the cyclooctadiene ligand. Compared to other 1,5-cyclooctadiene-coordinated Rh(I) complexes the two double bonds in the anion are slightly elongated (C13—C14 1.398 (2) Å, C17—C18 1.4012 (2) Å) (median: 1.383 Å, lower/upper quartile: 1.369/1.396 Å, 978 observations). The Rh—Cl bonds (Rh3—Cl1 2.3732 (5) Å, Rh3—Cl2 2.3807 (4) Å) are in the expected range (median: 2.391 Å, lower/upper quartile: 2.355/2.432 Å, 1812 observations taken from CSD version 1.10; Allen, 2002).

Related literature top

For related literature, see: Fairlie & Bosnich (1987); Wang et al. (2000); Cao et al. (2000). For a description of the Cambridge Structural Databsae, see: Allen (2002).

Experimental top

Under anaerobic conditions [{Rh(µ-Cl)(cod)}2] (0.20 g, 0.41 mmol) was dissolved in toluene (10 ml) at 333–343 K and to a stirred solution of 1,2-bis(dimethylphosphino)ethane (dmpe) (0.12 g, 0.82 mmol) in toluene (12 ml) was added dropwise over a period of 45 minutes. After refluxing for 3 h an orange colored solution and a yellow crystalline precipitate was obtained. Then n-pentane (10 ml) was added and the reaction mixture was cooled to 195 K. The precipitate was collected by filtration, washed with n-pentane (6 x 15 ml) and recrystallized from tetrahydrofuran.

Refinement top

All H atoms were positioned geometrically and treated as riding model with C–H bond distances of 0.98, 0.99 and 1.00 Å for CH3, CH2 and CH type H-atoms with Uiso = 1.5 times Ueq(methyl C) and 1.2 times Ueq(non-methyl C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Rh(dmpe)2][RhCl2(cod)] complex. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x, -y, -z]
Bis[1,2-bis(dimethylphosphino)ethane-κ2P,P']rhodium(I) dichlorido[(1,2,5,6-η)-1,5-cyclooctadiene]rhodium(I) top
Crystal data top
[Rh(C6H16P2)2][RhCl2(C8H12)]Z = 2
Mr = 685.15F(000) = 696
Triclinic, P1Dx = 1.666 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4972 (2) ÅCell parameters from 19365 reflections
b = 11.2873 (4) Åθ = 2.7–32.5°
c = 13.0884 (4) ŵ = 1.65 mm1
α = 71.657 (3)°T = 130 K
β = 80.388 (2)°Plates, orange
γ = 68.346 (3)°0.4 × 0.2 × 0.2 mm
V = 1365.83 (8) Å3
Data collection top
Oxford Diffraction CCD Xcalibur S
diffractometer
8309 independent reflections
Graphite monochromator6991 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.027
ω and ϕ scansθmax = 30.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1414
Tmin = 0.648, Tmax = 0.720k = 1616
40667 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
8309 reflections(Δ/σ)max = 0.003
264 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Rh(C6H16P2)2][RhCl2(C8H12)]γ = 68.346 (3)°
Mr = 685.15V = 1365.83 (8) Å3
Triclinic, P1Z = 2
a = 10.4972 (2) ÅMo Kα radiation
b = 11.2873 (4) ŵ = 1.65 mm1
c = 13.0884 (4) ÅT = 130 K
α = 71.657 (3)°0.4 × 0.2 × 0.2 mm
β = 80.388 (2)°
Data collection top
Oxford Diffraction CCD Xcalibur S
diffractometer
8309 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
6991 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.720Rint = 0.027
40667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.01Δρmax = 1.06 e Å3
8309 reflectionsΔρmin = 0.74 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10000.01449 (4)
Rh20.50.50.50.01465 (4)
Rh30.789115 (13)0.818563 (12)0.730707 (9)0.01649 (4)
Cl20.64019 (5)0.72031 (4)0.85695 (3)0.02505 (9)
Cl10.97386 (5)0.61380 (4)0.76211 (4)0.02901 (10)
P10.01483 (5)0.21735 (4)0.05439 (3)0.01713 (8)
P20.22397 (4)0.08105 (4)0.05722 (3)0.01782 (9)
P30.31544 (5)0.44601 (4)0.48695 (3)0.01834 (9)
P40.54933 (5)0.49466 (4)0.32464 (3)0.01772 (9)
C20.0328 (2)0.28727 (18)0.19860 (13)0.0246 (4)
H2A0.0530.24730.23710.037*
H2B0.10770.26890.21930.037*
H2C0.05350.38340.21740.037*
C120.6066 (2)0.6161 (2)0.21891 (14)0.0298 (4)
H12A0.70350.59970.22640.045*
H12B0.55150.70540.22490.045*
H12C0.59580.60890.14840.045*
C30.17446 (19)0.31739 (18)0.00272 (15)0.0271 (4)
H3A0.20070.41080.04190.033*
H3B0.16120.3150.07660.033*
C50.25655 (19)0.05513 (19)0.20196 (13)0.0266 (4)
H5A0.23710.03970.23740.04*
H5B0.19720.08710.22880.04*
H5C0.35290.1040.21770.04*
C80.15174 (19)0.5794 (2)0.48305 (16)0.0299 (4)
H8A0.16160.66220.43480.045*
H8B0.12220.58990.55570.045*
H8C0.08310.55830.45650.045*
C100.39535 (18)0.50045 (19)0.27240 (13)0.0235 (4)
H10A0.32980.59240.25450.028*
H10B0.42010.47070.2060.028*
C70.2741 (2)0.3057 (2)0.58132 (15)0.0320 (4)
H7A0.23210.32840.64840.048*
H7B0.35830.22860.59670.048*
H7C0.20970.28470.54960.048*
C110.6754 (2)0.34147 (19)0.30462 (15)0.0287 (4)
H11A0.67930.34240.2290.043*
H11B0.64920.26610.35110.043*
H11C0.76570.33320.32280.043*
C10.1096 (2)0.27999 (19)0.02981 (16)0.0315 (4)
H1A0.07420.37720.05210.047*
H1B0.12620.24840.04720.047*
H1C0.19580.24830.07130.047*
C90.32987 (19)0.41001 (19)0.35813 (13)0.0237 (4)
H9A0.38680.31610.36470.028*
H9B0.23770.42450.33740.028*
C130.65456 (18)1.01014 (17)0.73195 (14)0.0242 (4)
H130.58731.01240.79580.029*
C140.62098 (18)0.96957 (18)0.65258 (14)0.0243 (4)
H140.53390.94860.67030.029*
C150.6539 (2)1.0163 (2)0.53370 (15)0.0316 (4)
H15A0.59321.1090.50540.038*
H15B0.6350.9610.49660.038*
C190.8837 (2)1.04352 (18)0.71184 (16)0.0273 (4)
H19A0.92891.10460.6620.033*
H19B0.91081.02570.78560.033*
C180.93356 (18)0.91525 (17)0.68116 (14)0.0214 (3)
H181.02860.85720.70290.026*
C60.3591 (2)0.0369 (2)0.02436 (17)0.0354 (5)
H6A0.44870.09960.03950.053*
H6B0.34840.04030.05220.053*
H6C0.35290.0530.06810.053*
C200.72756 (19)1.11091 (18)0.70816 (16)0.0298 (4)
H20A0.69431.16260.76180.036*
H20B0.7051.17340.63590.036*
C170.89609 (18)0.89728 (18)0.59071 (13)0.0222 (3)
H170.9690.82890.560.027*
C40.28710 (19)0.26187 (18)0.00563 (14)0.0268 (4)
H4A0.36630.29960.05240.032*
H4B0.31860.28760.06790.032*
C160.80332 (19)1.0096 (2)0.50800 (14)0.0303 (4)
H16A0.83340.9960.43550.036*
H16B0.8111.09470.50710.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01354 (9)0.01490 (8)0.01477 (7)0.00652 (7)0.00139 (6)0.00282 (6)
Rh20.01290 (9)0.01807 (8)0.01478 (7)0.00699 (7)0.00143 (6)0.00598 (6)
Rh30.01552 (7)0.01655 (6)0.01915 (6)0.00667 (5)0.00059 (5)0.00661 (5)
Cl20.0255 (2)0.0272 (2)0.02541 (19)0.01429 (18)0.00422 (16)0.00774 (16)
Cl10.0233 (2)0.01754 (19)0.0422 (2)0.00484 (17)0.00048 (19)0.00613 (17)
P10.0186 (2)0.01635 (19)0.01718 (17)0.00832 (17)0.00025 (15)0.00343 (15)
P20.0150 (2)0.0210 (2)0.01775 (17)0.00742 (17)0.00198 (15)0.00553 (15)
P30.0162 (2)0.0212 (2)0.02015 (18)0.00926 (18)0.00094 (16)0.00652 (16)
P40.0175 (2)0.0198 (2)0.01589 (17)0.00665 (17)0.00181 (15)0.00596 (15)
C20.0313 (11)0.0228 (8)0.0199 (7)0.0120 (8)0.0015 (7)0.0026 (6)
C120.0336 (11)0.0341 (10)0.0217 (8)0.0182 (9)0.0029 (7)0.0018 (7)
C30.0291 (11)0.0182 (8)0.0290 (8)0.0050 (7)0.0062 (7)0.0071 (7)
C50.0250 (10)0.0310 (10)0.0191 (7)0.0071 (8)0.0036 (7)0.0061 (7)
C80.0185 (10)0.0346 (10)0.0357 (10)0.0074 (8)0.0003 (8)0.0113 (8)
C100.0229 (10)0.0284 (9)0.0204 (7)0.0084 (8)0.0037 (7)0.0076 (7)
C70.0364 (12)0.0341 (10)0.0317 (9)0.0238 (9)0.0007 (8)0.0046 (8)
C110.0276 (11)0.0274 (9)0.0276 (8)0.0040 (8)0.0035 (7)0.0119 (7)
C10.0352 (12)0.0270 (9)0.0384 (10)0.0170 (9)0.0101 (9)0.0054 (8)
C90.0228 (10)0.0296 (9)0.0251 (8)0.0124 (8)0.0025 (7)0.0115 (7)
C130.0195 (9)0.0194 (8)0.0308 (8)0.0046 (7)0.0067 (7)0.0094 (7)
C140.0144 (9)0.0271 (9)0.0273 (8)0.0067 (7)0.0008 (7)0.0035 (7)
C150.0220 (10)0.0426 (12)0.0264 (8)0.0129 (9)0.0045 (7)0.0003 (8)
C190.0282 (11)0.0218 (9)0.0360 (9)0.0126 (8)0.0015 (8)0.0087 (7)
C180.0149 (9)0.0188 (8)0.0301 (8)0.0067 (7)0.0004 (7)0.0061 (7)
C60.0204 (10)0.0505 (13)0.0474 (12)0.0162 (10)0.0028 (9)0.0270 (10)
C200.0277 (11)0.0203 (8)0.0416 (10)0.0077 (8)0.0041 (8)0.0125 (8)
C170.0167 (9)0.0251 (8)0.0232 (7)0.0085 (7)0.0054 (6)0.0060 (7)
C40.0211 (10)0.0230 (9)0.0262 (8)0.0026 (7)0.0035 (7)0.0015 (7)
C160.0235 (10)0.0387 (11)0.0234 (8)0.0114 (9)0.0005 (7)0.0011 (8)
Geometric parameters (Å, º) top
Rh1—P22.2762 (4)C8—H8C0.98
Rh1—P2i2.2762 (4)C10—C91.521 (2)
Rh1—P12.2815 (4)C10—H10A0.99
Rh1—P1i2.2815 (4)C10—H10B0.99
Rh2—P3ii2.2807 (4)C7—H7A0.98
Rh2—P32.2807 (4)C7—H7B0.98
Rh2—P42.2819 (4)C7—H7C0.98
Rh2—P4ii2.2819 (4)C11—H11A0.98
Rh3—C142.0860 (18)C11—H11B0.98
Rh3—C182.0876 (17)C11—H11C0.98
Rh3—C132.1051 (17)C1—H1A0.98
Rh3—C172.1053 (16)C1—H1B0.98
Rh3—Cl12.3732 (5)C1—H1C0.98
Rh3—Cl22.3807 (4)C9—H9A0.99
P1—C11.8096 (18)C9—H9B0.99
P1—C21.8145 (17)C13—C141.398 (2)
P1—C31.8326 (18)C13—C201.523 (2)
P2—C51.8167 (16)C13—H131
P2—C61.8177 (19)C14—C151.502 (2)
P2—C41.8288 (18)C14—H141
P3—C81.8150 (19)C15—C161.526 (3)
P3—C71.8214 (19)C15—H15A0.99
P3—C91.8251 (17)C15—H15B0.99
P4—C111.8138 (18)C19—C181.506 (2)
P4—C121.8146 (18)C19—C201.534 (3)
P4—C101.8295 (18)C19—H19A0.99
C2—H2A0.98C19—H19B0.99
C2—H2B0.98C18—C171.401 (2)
C2—H2C0.98C18—H181
C12—H12A0.98C6—H6A0.98
C12—H12B0.98C6—H6B0.98
C12—H12C0.98C6—H6C0.98
C3—C41.520 (3)C20—H20A0.99
C3—H3A0.99C20—H20B0.99
C3—H3B0.99C17—C161.518 (2)
C5—H5A0.98C17—H171
C5—H5B0.98C4—H4A0.99
C5—H5C0.98C4—H4B0.99
C8—H8A0.98C16—H16A0.99
C8—H8B0.98C16—H16B0.99
P2—Rh1—P2i180.00 (2)H10A—C10—H10B108.4
P2—Rh1—P184.146 (16)P3—C7—H7A109.5
P2i—Rh1—P195.854 (16)P3—C7—H7B109.5
P2—Rh1—P1i95.854 (16)H7A—C7—H7B109.5
P2i—Rh1—P1i84.146 (16)P3—C7—H7C109.5
P1—Rh1—P1i180H7A—C7—H7C109.5
P3ii—Rh2—P3180.000 (7)H7B—C7—H7C109.5
P3ii—Rh2—P495.774 (15)P4—C11—H11A109.5
P3—Rh2—P484.226 (15)P4—C11—H11B109.5
P3ii—Rh2—P4ii84.226 (15)H11A—C11—H11B109.5
P3—Rh2—P4ii95.774 (15)P4—C11—H11C109.5
P4—Rh2—P4ii180H11A—C11—H11C109.5
C14—Rh3—C1898.94 (7)H11B—C11—H11C109.5
C14—Rh3—C1338.96 (7)P1—C1—H1A109.5
C18—Rh3—C1382.54 (7)P1—C1—H1B109.5
C14—Rh3—C1781.97 (7)H1A—C1—H1B109.5
C18—Rh3—C1739.04 (7)P1—C1—H1C109.5
C13—Rh3—C1790.89 (7)H1A—C1—H1C109.5
C14—Rh3—Cl1156.67 (5)H1B—C1—H1C109.5
C18—Rh3—Cl188.31 (5)C10—C9—P3109.25 (11)
C13—Rh3—Cl1163.98 (5)C10—C9—H9A109.8
C17—Rh3—Cl190.22 (5)P3—C9—H9A109.8
C14—Rh3—Cl290.68 (5)C10—C9—H9B109.8
C18—Rh3—Cl2155.46 (5)P3—C9—H9B109.8
C13—Rh3—Cl291.23 (5)H9A—C9—H9B108.3
C17—Rh3—Cl2165.43 (5)C14—C13—C20123.88 (16)
Cl1—Rh3—Cl291.696 (16)C14—C13—Rh369.78 (10)
C1—P1—C2102.79 (9)C20—C13—Rh3113.15 (12)
C1—P1—C3101.99 (9)C14—C13—H13114.1
C2—P1—C3103.04 (9)C20—C13—H13114.1
C1—P1—Rh1125.04 (7)Rh3—C13—H13114.1
C2—P1—Rh1111.70 (6)C13—C14—C15125.14 (16)
C3—P1—Rh1109.87 (6)C13—C14—Rh371.26 (10)
C5—P2—C6101.34 (9)C15—C14—Rh3111.50 (12)
C5—P2—C4102.65 (9)C13—C14—H14113.8
C6—P2—C4102.09 (10)C15—C14—H14113.8
C5—P2—Rh1115.55 (6)Rh3—C14—H14113.8
C6—P2—Rh1123.10 (7)C14—C15—C16112.46 (15)
C4—P2—Rh1109.57 (6)C14—C15—H15A109.1
C8—P3—C7101.85 (10)C16—C15—H15A109.1
C8—P3—C9103.17 (9)C14—C15—H15B109.1
C7—P3—C9102.03 (9)C16—C15—H15B109.1
C8—P3—Rh2114.62 (7)H15A—C15—H15B107.8
C7—P3—Rh2123.37 (7)C18—C19—C20112.53 (15)
C9—P3—Rh2109.43 (6)C18—C19—H19A109.1
C11—P4—C12100.84 (9)C20—C19—H19A109.1
C11—P4—C10102.58 (9)C18—C19—H19B109.1
C12—P4—C10103.19 (9)C20—C19—H19B109.1
C11—P4—Rh2115.09 (6)H19A—C19—H19B107.8
C12—P4—Rh2124.40 (6)C17—C18—C19125.41 (17)
C10—P4—Rh2108.19 (5)C17—C18—Rh371.16 (9)
P1—C2—H2A109.5C19—C18—Rh3111.01 (12)
P1—C2—H2B109.5C17—C18—H18113.8
H2A—C2—H2B109.5C19—C18—H18113.8
P1—C2—H2C109.5Rh3—C18—H18113.8
H2A—C2—H2C109.5P2—C6—H6A109.5
H2B—C2—H2C109.5P2—C6—H6B109.5
P4—C12—H12A109.5H6A—C6—H6B109.5
P4—C12—H12B109.5P2—C6—H6C109.5
H12A—C12—H12B109.5H6A—C6—H6C109.5
P4—C12—H12C109.5H6B—C6—H6C109.5
H12A—C12—H12C109.5C13—C20—C19111.66 (15)
H12B—C12—H12C109.5C13—C20—H20A109.3
C4—C3—P1108.96 (12)C19—C20—H20A109.3
C4—C3—H3A109.9C13—C20—H20B109.3
P1—C3—H3A109.9C19—C20—H20B109.3
C4—C3—H3B109.9H20A—C20—H20B107.9
P1—C3—H3B109.9C18—C17—C16122.95 (16)
H3A—C3—H3B108.3C18—C17—Rh369.79 (9)
P2—C5—H5A109.5C16—C17—Rh3113.68 (11)
P2—C5—H5B109.5C18—C17—H17114.2
H5A—C5—H5B109.5C16—C17—H17114.2
P2—C5—H5C109.5Rh3—C17—H17114.2
H5A—C5—H5C109.5C3—C4—P2110.47 (13)
H5B—C5—H5C109.5C3—C4—H4A109.6
P3—C8—H8A109.5P2—C4—H4A109.6
P3—C8—H8B109.5C3—C4—H4B109.6
H8A—C8—H8B109.5P2—C4—H4B109.6
P3—C8—H8C109.5H4A—C4—H4B108.1
H8A—C8—H8C109.5C17—C16—C15111.14 (15)
H8B—C8—H8C109.5C17—C16—H16A109.4
C9—C10—P4108.60 (12)C15—C16—H16A109.4
C9—C10—H10A110C17—C16—H16B109.4
P4—C10—H10A110C15—C16—H16B109.4
C9—C10—H10B110H16A—C16—H16B108
P4—C10—H10B110
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Rh(C6H16P2)2][RhCl2(C8H12)]
Mr685.15
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)10.4972 (2), 11.2873 (4), 13.0884 (4)
α, β, γ (°)71.657 (3), 80.388 (2), 68.346 (3)
V3)1365.83 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction CCD Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.648, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
40667, 8309, 6991
Rint0.027
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.01
No. of reflections8309
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.74

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft and gifts of chemicals from Merck (Darmstadt, Germany) are gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCao, P., Wang, B. & Zhang, X. (2000). J. Am. Chem. Soc. 122, 6490–6491.  Web of Science CrossRef CAS Google Scholar
First citationFairlie, D. P. & Bosnich, B. (1987). Organometallics, 7, 936–945.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B., Cao, P. & Zhang, X. (2000). Tetrahedron Lett. 41, 8041–8044.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds