organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­phenyl-2,5-bis­­(tri­methyl­silyl)cyclo­penta­dienone

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Saitama City, Saitama 338-8570, Japan
*Correspondence e-mail: masaichi@chem.saitama-u.ac.jp

(Received 13 September 2008; accepted 11 October 2008; online 18 October 2008)

In the title compound, C23H28OSi2, the five-membered ring is essentially planar and the phenyl rings are oriented with respect to the mean plane of this ring by 56.01 (3) and 56.68 (4)°.

Related literature

For a previous report of the synthesis of the title compound, see: Rajesh & Periasamy (1999[Rajesh, T. & Periasamy, M. (1999). Organometallics, 18, 5709-5712.]). For related structures, see: Barnes et al. (1991[Barnes, J. C., Horspool, W. M. & Mackie, F. I. (1991). Acta Cryst. C47, 164-168.]); Ruffani et al. (2006[Ruffani, A., Schwarzer, A. & Weber, E. (2006). Acta Cryst. E62, o2281o2282.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28OSi2

  • Mr = 376.63

  • Orthorhombic, P 21 21 21

  • a = 9.8418 (6) Å

  • b = 11.8041 (7) Å

  • c = 19.0181 (12) Å

  • V = 2209.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 103 (3) K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.935

  • 16200 measured reflections

  • 5286 independent reflections

  • 5181 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.07

  • 5286 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2292 Friedel pairs

  • Flack parameter: 0.01 (6)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Although the synthesis of the title compound, (I), was already reported (Rajesh & Periasamy, 1999), the reported NMR data were incorrect. Thus, we report herein the molecular structure of the title compound and revise its NMR data. The five-membered ring and four bonds derived from the each of carbon atoms in the five-membered ring are situated in a planar geometry, as was observed in the tetraphenylcyclopentadienone (Barnes et al., 1991). Bond alternation of the C—C bonds in the five-membered ring of (I) is found, as was observed in other cyclopentadienones (Barnes et al., 1991; Ruffani et al., 2006). The C1—O1 distance (1.2139 (15) Å) in (I), is quite similar to that found in the tetraphenyl derivative (Barnes et al., 1991).

Related literature top

For a previous report of the synthesis of the title compound, see: Rajesh & Periasamy (1999). For related structures, see: Barnes et al. (1991); Ruffani et al. (2006). [Please check added text]

Experimental top

To lithium (32 mg, 4.61 mmol) was added a diethyl ether (2.5 ml) solution of phenyl(trimethylsilyl)acetylene (408 mg, 2.34 mmol) and the resulting mixture was stirred at room temperature for 4 h. To an ether solution of 1,4-dilithio-1,3-butadiene thus obtained was added diethyl ether (8 ml) and unreacted lithium was removed by filtration. Carbon dioxide was bubbled into the filtrate at room temperature for 1 min. After treatment of the resulting mixture with hydrochloric acid (3 N), the organic layer was extracted with diethyl ether and dried over anhydrous magnesium sulfate. After removal of volatile substances, the residue was subjected to column chromatography (SiO2, hexane:ethyl acetate = 30:1) to afford the title compound, 3,4-diphenyl-2,5-bis(trimethylsilyl)cyclopentadienone (I) (22 mg, 5%). Suitable crystals for X-ray crystallographic analysis were obtained by slow evaporation of a hexane solution of (I).

Refinement top

Hydrogen atoms attached to C(sp3) and C(sp2) carbon atoms were treated as riding with C—H distances of 0.96 and 0.93 Å, respectively, and were included in the final cycles of least squares with isotropic Uijs by using a riding model, while all the other atoms were refined anisotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
3,4-Diphenyl-2,5-bis(trimethylsilyl)cyclopentadienone top
Crystal data top
C23H28OSi2F(000) = 808
Mr = 376.63Dx = 1.132 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5798 reflections
a = 9.8418 (6) Åθ = 2.7–27.9°
b = 11.8041 (7) ŵ = 0.17 mm1
c = 19.0181 (12) ÅT = 103 K
V = 2209.4 (2) Å3Cube, orange
Z = 40.50 × 0.40 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5286 independent reflections
Radiation source: fine-focus sealed tube5181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.922, Tmax = 0.935k = 1515
16200 measured reflectionsl = 2125
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2508P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5286 reflectionsΔρmax = 0.28 e Å3
241 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2292 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C23H28OSi2V = 2209.4 (2) Å3
Mr = 376.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.8418 (6) ŵ = 0.17 mm1
b = 11.8041 (7) ÅT = 103 K
c = 19.0181 (12) Å0.50 × 0.40 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5181 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.935Rint = 0.021
16200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.28 e Å3
S = 1.07Δρmin = 0.20 e Å3
5286 reflectionsAbsolute structure: Flack (1983), with 2292 Friedel pairs
241 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The Flack parameter was not changed after least-square refinement without merging the reflections. When the refinement was carried out using the opposite absolute structure, the Flack parameter was 0.99 (7).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.18748 (3)1.12044 (3)0.976841 (17)0.01882 (8)
Si20.42760 (3)0.77489 (3)0.787011 (18)0.02008 (8)
O10.42093 (9)1.01676 (8)0.87657 (5)0.0272 (2)
C20.18860 (12)0.99471 (10)0.91621 (6)0.0180 (2)
C150.08537 (12)0.72378 (10)0.82868 (6)0.0190 (2)
C70.03840 (14)1.11986 (13)1.03721 (7)0.0289 (3)
H7A0.03611.04971.06270.043*
H7B0.04361.12781.01030.043*
H7C0.04591.18181.06970.043*
C30.09673 (12)0.91490 (9)0.89917 (6)0.0176 (2)
C60.18912 (15)1.25143 (10)0.92156 (7)0.0267 (3)
H6A0.11161.25130.89090.040*
H6B0.27081.25330.89400.040*
H6C0.18581.31700.95140.040*
C160.03609 (13)0.73727 (11)0.79091 (7)0.0229 (2)
H160.06940.80960.78190.028*
C120.31728 (13)0.90660 (12)0.96478 (7)0.0263 (3)
H120.40700.90590.98020.032*
C90.04729 (11)0.91027 (10)0.92063 (6)0.0181 (2)
C100.13363 (12)1.00076 (11)0.90568 (6)0.0209 (2)
H100.10091.06280.88070.025*
C140.09904 (13)0.81670 (11)0.95650 (6)0.0227 (2)
H140.04320.75480.96540.027*
C40.16243 (12)0.82381 (10)0.85340 (6)0.0181 (2)
C180.06037 (15)0.53448 (11)0.78188 (7)0.0290 (3)
H180.10870.47160.76620.035*
C80.34391 (14)1.11229 (13)1.03210 (7)0.0318 (3)
H8A0.34551.17481.06440.048*
H8B0.42271.11541.00240.048*
H8C0.34401.04241.05800.048*
C10.31734 (12)0.96101 (10)0.87823 (6)0.0191 (2)
C200.13106 (14)0.61403 (11)0.84330 (7)0.0228 (2)
H200.21090.60370.86860.027*
C220.55418 (15)0.87927 (12)0.75313 (8)0.0333 (3)
H22A0.61810.84120.72320.050*
H22B0.60150.91310.79190.050*
H22C0.50810.93710.72690.050*
C130.23314 (13)0.81532 (12)0.97897 (7)0.0271 (3)
H130.26650.75321.00350.033*
C110.26813 (13)0.99900 (12)0.92774 (7)0.0241 (3)
H110.32511.05970.91770.029*
C50.29427 (12)0.84939 (10)0.84058 (6)0.0185 (2)
C230.34694 (14)0.70279 (12)0.71046 (7)0.0292 (3)
H23A0.41610.66930.68160.044*
H23B0.29670.75710.68340.044*
H23C0.28650.64480.72700.044*
C190.05826 (15)0.52031 (11)0.82031 (7)0.0284 (3)
H190.08910.44780.83070.034*
C170.10663 (13)0.64309 (12)0.76695 (7)0.0275 (3)
H170.18550.65270.74070.033*
C210.51771 (14)0.67089 (12)0.84432 (8)0.0287 (3)
H21A0.45340.61760.86300.043*
H21B0.56120.71020.88230.043*
H21C0.58490.63130.81720.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01810 (15)0.01801 (15)0.02036 (15)0.00020 (12)0.00082 (12)0.00287 (12)
Si20.02101 (15)0.01866 (15)0.02057 (15)0.00210 (12)0.00300 (12)0.00136 (12)
O10.0186 (4)0.0265 (4)0.0366 (5)0.0041 (4)0.0035 (4)0.0071 (4)
C20.0175 (5)0.0178 (5)0.0188 (5)0.0023 (4)0.0003 (4)0.0005 (4)
C150.0209 (5)0.0197 (5)0.0164 (5)0.0020 (5)0.0017 (4)0.0011 (4)
C70.0289 (6)0.0320 (7)0.0257 (6)0.0020 (6)0.0058 (5)0.0061 (5)
C30.0185 (5)0.0167 (5)0.0175 (5)0.0021 (4)0.0003 (4)0.0020 (4)
C60.0322 (6)0.0188 (6)0.0291 (6)0.0009 (5)0.0004 (5)0.0004 (4)
C160.0236 (6)0.0232 (6)0.0220 (5)0.0004 (5)0.0011 (5)0.0002 (5)
C120.0178 (5)0.0358 (7)0.0253 (6)0.0019 (5)0.0025 (5)0.0021 (5)
C90.0171 (5)0.0196 (5)0.0175 (5)0.0005 (4)0.0025 (4)0.0023 (4)
C100.0200 (5)0.0204 (5)0.0224 (5)0.0003 (5)0.0006 (4)0.0025 (4)
C140.0232 (6)0.0230 (6)0.0219 (6)0.0017 (5)0.0000 (5)0.0042 (4)
C40.0216 (6)0.0166 (5)0.0162 (5)0.0022 (4)0.0010 (4)0.0015 (4)
C180.0361 (7)0.0251 (6)0.0256 (6)0.0110 (5)0.0011 (6)0.0062 (5)
C80.0267 (6)0.0374 (7)0.0315 (7)0.0009 (6)0.0092 (5)0.0060 (6)
C10.0180 (5)0.0190 (5)0.0202 (5)0.0028 (4)0.0005 (4)0.0008 (4)
C200.0265 (6)0.0207 (6)0.0211 (5)0.0003 (5)0.0004 (5)0.0003 (5)
C220.0341 (7)0.0291 (6)0.0367 (7)0.0043 (6)0.0147 (6)0.0016 (6)
C130.0251 (6)0.0316 (7)0.0246 (6)0.0039 (5)0.0021 (5)0.0075 (5)
C110.0194 (6)0.0264 (6)0.0264 (6)0.0035 (5)0.0020 (5)0.0007 (5)
C50.0205 (6)0.0167 (5)0.0183 (5)0.0015 (4)0.0007 (4)0.0002 (4)
C230.0331 (7)0.0327 (7)0.0217 (6)0.0001 (5)0.0027 (5)0.0064 (5)
C190.0383 (7)0.0183 (6)0.0285 (6)0.0024 (5)0.0024 (6)0.0005 (5)
C170.0251 (6)0.0340 (7)0.0234 (6)0.0052 (5)0.0028 (5)0.0023 (5)
C210.0269 (6)0.0269 (6)0.0323 (7)0.0074 (5)0.0012 (5)0.0004 (5)
Geometric parameters (Å, º) top
Si1—C71.8630 (13)C9—C141.3946 (17)
Si1—C81.8666 (14)C10—C111.3887 (17)
Si1—C61.8699 (13)C10—H100.9300
Si1—C21.8795 (12)C14—C131.3873 (19)
Si2—C231.8640 (14)C14—H140.9300
Si2—C211.8659 (14)C4—C51.3544 (17)
Si2—C221.8668 (14)C18—C191.388 (2)
Si2—C51.8796 (12)C18—C171.390 (2)
O1—C11.2139 (15)C18—H180.9300
C2—C31.3454 (16)C8—H8A0.9600
C2—C11.5117 (16)C8—H8B0.9600
C15—C201.3993 (17)C8—H8C0.9600
C15—C161.4037 (17)C1—C51.5166 (16)
C15—C41.4799 (16)C20—C191.3886 (18)
C7—H7A0.9600C20—H200.9300
C7—H7B0.9600C22—H22A0.9600
C7—H7C0.9600C22—H22B0.9600
C3—C91.4760 (16)C22—H22C0.9600
C3—C41.5271 (16)C13—H130.9300
C6—H6A0.9600C11—H110.9300
C6—H6B0.9600C23—H23A0.9600
C6—H6C0.9600C23—H23B0.9600
C16—C171.3876 (18)C23—H23C0.9600
C16—H160.9300C19—H190.9300
C12—C111.3855 (19)C17—H170.9300
C12—C131.3855 (19)C21—H21A0.9600
C12—H120.9300C21—H21B0.9600
C9—C101.3942 (16)C21—H21C0.9600
C7—Si1—C8107.60 (6)C15—C4—C3121.72 (10)
C7—Si1—C6110.88 (7)C19—C18—C17119.63 (12)
C8—Si1—C6110.62 (7)C19—C18—H18120.2
C7—Si1—C2112.32 (6)C17—C18—H18120.2
C8—Si1—C2107.45 (6)Si1—C8—H8A109.5
C6—Si1—C2107.94 (5)Si1—C8—H8B109.5
C23—Si2—C21110.99 (6)H8A—C8—H8B109.5
C23—Si2—C22108.42 (7)Si1—C8—H8C109.5
C21—Si2—C22108.58 (7)H8A—C8—H8C109.5
C23—Si2—C5109.86 (6)H8B—C8—H8C109.5
C21—Si2—C5108.84 (6)O1—C1—C2125.01 (11)
C22—Si2—C5110.13 (6)O1—C1—C5125.76 (11)
C3—C2—C1105.30 (10)C2—C1—C5109.19 (10)
C3—C2—Si1134.17 (9)C19—C20—C15120.61 (12)
C1—C2—Si1120.39 (8)C19—C20—H20119.7
C20—C15—C16118.71 (11)C15—C20—H20119.7
C20—C15—C4120.72 (11)Si2—C22—H22A109.5
C16—C15—C4120.56 (11)Si2—C22—H22B109.5
Si1—C7—H7A109.5H22A—C22—H22B109.5
Si1—C7—H7B109.5Si2—C22—H22C109.5
H7A—C7—H7B109.5H22A—C22—H22C109.5
Si1—C7—H7C109.5H22B—C22—H22C109.5
H7A—C7—H7C109.5C12—C13—C14119.96 (12)
H7B—C7—H7C109.5C12—C13—H13120.0
C2—C3—C9127.20 (11)C14—C13—H13120.0
C2—C3—C4110.23 (10)C12—C11—C10119.88 (12)
C9—C3—C4122.56 (10)C12—C11—H11120.1
Si1—C6—H6A109.5C10—C11—H11120.1
Si1—C6—H6B109.5C4—C5—C1104.61 (10)
H6A—C6—H6B109.5C4—C5—Si2131.46 (9)
Si1—C6—H6C109.5C1—C5—Si2123.91 (9)
H6A—C6—H6C109.5Si2—C23—H23A109.5
H6B—C6—H6C109.5Si2—C23—H23B109.5
C17—C16—C15120.21 (11)H23A—C23—H23B109.5
C17—C16—H16119.9Si2—C23—H23C109.5
C15—C16—H16119.9H23A—C23—H23C109.5
C11—C12—C13120.17 (12)H23B—C23—H23C109.5
C11—C12—H12119.9C18—C19—C20120.27 (12)
C13—C12—H12119.9C18—C19—H19119.9
C10—C9—C14118.95 (11)C20—C19—H19119.9
C10—C9—C3120.03 (11)C16—C17—C18120.54 (12)
C14—C9—C3121.02 (11)C16—C17—H17119.7
C11—C10—C9120.52 (12)C18—C17—H17119.7
C11—C10—H10119.7Si2—C21—H21A109.5
C9—C10—H10119.7Si2—C21—H21B109.5
C13—C14—C9120.49 (12)H21A—C21—H21B109.5
C13—C14—H14119.8Si2—C21—H21C109.5
C9—C14—H14119.8H21A—C21—H21C109.5
C5—C4—C15127.71 (11)H21B—C21—H21C109.5
C5—C4—C3110.56 (10)

Experimental details

Crystal data
Chemical formulaC23H28OSi2
Mr376.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)103
a, b, c (Å)9.8418 (6), 11.8041 (7), 19.0181 (12)
V3)2209.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
16200, 5286, 5181
Rint0.021
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.07
No. of reflections5286
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20
Absolute structureFlack (1983), with 2292 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists (B), No. 17750032 (to MS), from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationBarnes, J. C., Horspool, W. M. & Mackie, F. I. (1991). Acta Cryst. C47, 164–168.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRajesh, T. & Periasamy, M. (1999). Organometallics, 18, 5709–5712.  Web of Science CrossRef CAS Google Scholar
First citationRuffani, A., Schwarzer, A. & Weber, E. (2006). Acta Cryst. E62, o2281o2282.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds