organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro-N-(p-tol­yl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 17 September 2008; accepted 7 October 2008; online 11 October 2008)

In the crystal structure of the title compound, C14H12FNO, the amide –NHCO– mean plane makes dihedral angles of 28.6 (2) and 37.5 (2)° with the mean planes through the fluoro­benzene and methyl­benzene units, respectively. The dihedral angle between the two benzene ring mean planes is 65.69 (10)°. In the crystal structure, mol­ecules are linked through N—H⋯O hydrogen bonds and stack along the b axis.

Related literature

For related structures, see: Chopra & Row (2005[Chopra, D. & Row, T. N. G. (2005). Cryst. Growth Des. 5, 1679-1681.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12FNO

  • Mr = 229.25

  • Monoclinic, C 2/c

  • a = 27.645 (3) Å

  • b = 5.2618 (6) Å

  • c = 15.892 (2) Å

  • β = 93.519 (3)°

  • V = 2307.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (1) K

  • 0.40 × 0.35 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.983

  • 13860 measured reflections

  • 3357 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.240

  • S = 1.01

  • 3357 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.77 (2) 2.35 (2) 3.087 (3) 161 (2)
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The background to this study has been described in our earlier paper on 4-chloro-N-(2-chlorophenyl)-benzamide (Saeed et al., 2008).

In the crystal structure of the title compound the two benzene rings are considerably twisted with respect to one another, with a dihedral angle of 65.69 (10)°. The amide –NHCO– mean plane makes dihedral angles of 28.6 (2) and 37.5 (2)° with the best mean planes through the fluorobenzene and methylbenzene units, respectively. In the crystal the molecules are linked through N—H···O hydrogen bonds and stack up the b axis.

No C—H···F hydrogen bonds were observed here, in contrast to the situation in 4-fluoro-N-(2-fluorophenyl)-benzamide (Chopra & Row, 2005).

Related literature top

For related structures, see: Chopra & Row (2005); Saeed et al. (2008).

Experimental top

4-Fluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: Anal. calcd. for C14H12FNO: C 73.35, H 5.28, N 6.11%; found: C 73.30, H 5.32, N 6.09%.

Refinement top

The N-bound H atom was located in a difference Fourier map and was freely refined. The other H atoms were positioned geometrically (C—H = 0.94 and 0.97 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound. The displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
3-Fluoro-N-(p-tolyl)benzamide top
Crystal data top
C14H12FNOF(000) = 960.00
Mr = 229.25Dx = 1.320 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 7127 reflections
a = 27.645 (3) Åθ = 3.0–30.0°
b = 5.2618 (6) ŵ = 0.09 mm1
c = 15.892 (2) ÅT = 223 K
β = 93.519 (3)°Block, colorless
V = 2307.3 (5) Å30.40 × 0.35 × 0.18 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
1779 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.055
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 3838
Tmin = 0.968, Tmax = 0.983k = 67
13860 measured reflectionsl = 2222
3357 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1335P)2]
where P = (Fo2 + 2Fc2)/3
3357 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12FNOV = 2307.3 (5) Å3
Mr = 229.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.645 (3) ŵ = 0.09 mm1
b = 5.2618 (6) ÅT = 223 K
c = 15.892 (2) Å0.40 × 0.35 × 0.18 mm
β = 93.519 (3)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3357 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
1779 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.983Rint = 0.055
13860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.32 e Å3
3357 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.69906 (5)0.5995 (3)0.23465 (10)0.0965 (5)
O10.52251 (5)0.6096 (3)0.14071 (11)0.0781 (5)
N10.50521 (6)0.1882 (4)0.12722 (11)0.0639 (5)
C10.58887 (6)0.3226 (4)0.14164 (11)0.0594 (5)
C20.62009 (7)0.4878 (4)0.18591 (12)0.0656 (5)
H20.60810.63270.21220.079*
C30.66868 (8)0.4361 (4)0.19066 (14)0.0703 (5)
C40.68819 (7)0.2292 (5)0.15293 (14)0.0745 (6)
H40.72170.19840.15760.089*
C50.65712 (7)0.0677 (4)0.10794 (14)0.0732 (6)
H50.66970.07410.08070.088*
C60.60772 (7)0.1105 (4)0.10214 (12)0.0657 (5)
H60.58690.00260.07180.079*
C70.53603 (7)0.3860 (4)0.13667 (11)0.0608 (5)
C80.45358 (7)0.2026 (4)0.11934 (11)0.0599 (5)
C90.42706 (7)0.0146 (4)0.15561 (13)0.0675 (5)
H90.44310.11640.18650.081*
C100.37703 (7)0.0181 (4)0.14673 (13)0.0729 (6)
H100.35940.11250.17120.087*
C110.35222 (7)0.2093 (4)0.10264 (11)0.0675 (5)
C120.37940 (7)0.3956 (4)0.06655 (13)0.0705 (6)
H120.36340.52690.03590.085*
C130.42967 (8)0.3940 (4)0.07434 (13)0.0704 (5)
H130.44740.52280.04910.085*
C140.29774 (8)0.2111 (6)0.09397 (16)0.0916 (8)
H14A0.28500.20430.14950.137*
H14B0.28640.06470.06130.137*
H14C0.28670.36550.06550.137*
H10.5158 (7)0.055 (4)0.1353 (12)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0752 (8)0.0995 (10)0.1131 (11)0.0114 (7)0.0082 (7)0.0173 (8)
O10.0711 (9)0.0616 (9)0.1023 (12)0.0027 (7)0.0107 (7)0.0059 (7)
N10.0633 (9)0.0566 (9)0.0719 (10)0.0009 (9)0.0063 (7)0.0030 (8)
C10.0655 (11)0.0619 (10)0.0518 (9)0.0016 (8)0.0112 (7)0.0049 (7)
C20.0692 (12)0.0646 (11)0.0636 (11)0.0002 (10)0.0087 (8)0.0013 (9)
C30.0681 (12)0.0758 (13)0.0669 (11)0.0049 (10)0.0035 (9)0.0027 (9)
C40.0648 (11)0.0822 (14)0.0779 (13)0.0043 (11)0.0148 (9)0.0089 (11)
C50.0746 (13)0.0759 (13)0.0709 (12)0.0088 (11)0.0190 (9)0.0006 (10)
C60.0705 (11)0.0665 (11)0.0610 (10)0.0004 (9)0.0127 (8)0.0028 (8)
C70.0625 (10)0.0636 (11)0.0570 (10)0.0008 (9)0.0088 (8)0.0002 (8)
C80.0605 (10)0.0645 (10)0.0551 (9)0.0013 (8)0.0076 (7)0.0050 (8)
C90.0657 (11)0.0717 (12)0.0659 (11)0.0011 (9)0.0100 (8)0.0067 (9)
C100.0717 (12)0.0787 (13)0.0694 (12)0.0049 (11)0.0141 (9)0.0063 (10)
C110.0635 (11)0.0852 (14)0.0540 (10)0.0019 (10)0.0058 (8)0.0085 (9)
C120.0712 (12)0.0729 (13)0.0663 (12)0.0063 (10)0.0044 (9)0.0028 (9)
C130.0763 (12)0.0725 (12)0.0626 (11)0.0045 (10)0.0041 (9)0.0088 (9)
C140.0683 (13)0.126 (2)0.0807 (15)0.0047 (14)0.0050 (11)0.0041 (14)
Geometric parameters (Å, º) top
F1—C31.364 (2)C6—H60.9400
O1—C71.238 (2)C8—C91.378 (3)
N1—C71.347 (3)C8—C131.380 (3)
N1—C81.427 (2)C9—C101.382 (3)
N1—H10.77 (2)C9—H90.9400
C1—C21.386 (3)C10—C111.384 (3)
C1—C61.397 (3)C10—H100.9400
C1—C71.496 (3)C11—C121.381 (3)
C2—C31.368 (3)C11—C141.504 (3)
C2—H20.9400C12—C131.388 (3)
C3—C41.370 (3)C12—H120.9400
C4—C51.377 (3)C13—H130.9400
C4—H40.9400C14—H14A0.9700
C5—C61.382 (3)C14—H14B0.9700
C5—H50.9400C14—H14C0.9700
C7—N1—C8126.25 (17)C9—C8—C13119.37 (18)
C7—N1—H1117.0 (15)C9—C8—N1118.68 (17)
C8—N1—H1115.6 (15)C13—C8—N1121.91 (17)
C2—C1—C6119.43 (17)C8—C9—C10120.14 (19)
C2—C1—C7117.56 (17)C8—C9—H9119.9
C6—C1—C7122.99 (17)C10—C9—H9119.9
C3—C2—C1118.83 (19)C9—C10—C11121.58 (19)
C3—C2—H2120.6C9—C10—H10119.2
C1—C2—H2120.6C11—C10—H10119.2
F1—C3—C2118.34 (19)C12—C11—C10117.44 (17)
F1—C3—C4118.61 (19)C12—C11—C14121.6 (2)
C2—C3—C4123.05 (19)C10—C11—C14120.9 (2)
C3—C4—C5117.92 (19)C11—C12—C13121.75 (18)
C3—C4—H4121.0C11—C12—H12119.1
C5—C4—H4121.0C13—C12—H12119.1
C4—C5—C6121.1 (2)C8—C13—C12119.71 (18)
C4—C5—H5119.4C8—C13—H13120.1
C6—C5—H5119.4C12—C13—H13120.1
C5—C6—C1119.65 (19)C11—C14—H14A109.5
C5—C6—H6120.2C11—C14—H14B109.5
C1—C6—H6120.2H14A—C14—H14B109.5
O1—C7—N1123.30 (18)C11—C14—H14C109.5
O1—C7—C1120.43 (17)H14A—C14—H14C109.5
N1—C7—C1116.27 (17)H14B—C14—H14C109.5
C6—C1—C2—C30.9 (3)C2—C1—C7—N1152.62 (17)
C7—C1—C2—C3179.24 (17)C6—C1—C7—N129.1 (3)
C1—C2—C3—F1179.77 (18)C7—N1—C8—C9144.0 (2)
C1—C2—C3—C40.6 (3)C7—N1—C8—C1338.1 (3)
F1—C3—C4—C5179.27 (19)C13—C8—C9—C100.1 (3)
C2—C3—C4—C50.3 (3)N1—C8—C9—C10177.82 (17)
C3—C4—C5—C61.0 (3)C8—C9—C10—C110.8 (3)
C4—C5—C6—C10.8 (3)C9—C10—C11—C120.9 (3)
C2—C1—C6—C50.2 (3)C9—C10—C11—C14179.65 (19)
C7—C1—C6—C5178.47 (18)C10—C11—C12—C130.5 (3)
C8—N1—C7—O10.9 (3)C14—C11—C12—C13179.9 (2)
C8—N1—C7—C1178.66 (15)C9—C8—C13—C120.3 (3)
C2—C1—C7—O127.8 (3)N1—C8—C13—C12178.19 (17)
C6—C1—C7—O1150.5 (2)C11—C12—C13—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.77 (2)2.35 (2)3.087 (3)161 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12FNO
Mr229.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)27.645 (3), 5.2618 (6), 15.892 (2)
β (°) 93.519 (3)
V3)2307.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.968, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13860, 3357, 1779
Rint0.055
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.240, 1.01
No. of reflections3357
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.77 (2)2.35 (2)3.087 (3)161 (2)
Symmetry code: (i) x, y1, z.
 

References

First citationChopra, D. & Row, T. N. G. (2005). Cryst. Growth Des. 5, 1679–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds