organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2132-o2133

4-(Cyclo­hexyl­sulfan­yl)-1-[(E)-2-(cyclo­hexyl­sulfan­yl)-1-phenyl­ethen­yl]-3-phenyl-1H-pyrazole

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 September 2008; accepted 13 October 2008; online 18 October 2008)

In the title compound, C29H34N2S2, the pyrazole ring is planar and both cyclo­hexane rings adopt chair conformations. The dihedral angles between the pyrazole ring and the two benzene rings are 59.9 (2) and 19.8 (2)°. The conformation and packing of the mol­ecules in the unit cell are stabilized by a weak intra­molecular C—H⋯S and C—H⋯N interactions, in addition to van der Waals forces.

Related literature

For pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-166.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For puckering and asymmetry analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). Manikannan (2008[Manikannan, R. (2008). PhD thesis, Madurai Kamaraj University, Madurai, India.]) describes other compounds formed along with the title compound in its synthesis.

[Scheme 1]

Experimental

Crystal data
  • C29H34N2S2

  • Mr = 474.70

  • Orthorhombic, P 21 21 21

  • a = 6.3859 (5) Å

  • b = 19.1596 (17) Å

  • c = 21.337 (2) Å

  • V = 2610.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.965

  • 19948 measured reflections

  • 7787 independent reflections

  • 4945 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.02

  • 7787 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3381 Friedel pairs

  • Flack parameter: −0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1 0.93 2.40 2.760 (4) 103
C27—H27⋯S2 0.93 2.80 3.450 (4) 128
C31—H31⋯N1 0.93 2.46 2.786 (4) 101

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen, 1996) properties. Some pyrazole derivatives were successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) properties.

An ORTEP plot of the molecule is shown in Fig. 1 and a packing plot in Fig. 2. The pyrazole ring adopts a planar conformation. The sum of the angles at N1 of the pyrazole ring (359.95°) is in accordance with sp2 hybridization (Beddoes et al., 1986). Both the cyclohexane rings in the molecule adopt chair conformations which can be seen from the puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983). The values for the ring C8-C13 are: q2 = 0.010 (4) Å, q3 = - 0.562 (4) Å, π = 186 (22)°, Δs(C9) and Δs(C12) =0.5 (4)° and for ring C20-C25 are: q2 = 0.014 (4) Å, q3 = - 0.572 (4) Å, π = 132 (14)°, Δs(C22) and Δs(C25) = 0.3 (3)°.

The best least-squares planes calculated for the two cyclohexane rings (atoms C8, C9, C11 & C12 lie in the plane and C10 & C13 deviate for one of the rings; atoms C21, C22, C24 & C25 lie in the plane and C20 & C23 deviate for the other ring ) are twisted from the pyrazole ring by 50.06 (17)° and 69.71 (15), respectively. The crystal packing is augmented by weak intramolecular C—H···N and C—H···S interactions in addition to van der Waals forces.

Related literature top

For pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For hybridization, see: Beddoes et al. (1986). For puckering and asymmetry analysis, see: Cremer & Pople (1975); Nardelli (1983). Manikannan (2008) describes other compounds formed along with the title compound in its synthesis.

Experimental top

A mixture of 2-(cyclohexylsulfanyl)-1-phenyl-1-ethanone N-[(E)-2- (cyclohexylsulfanyl)-1-phenylethylidene]hydrazone (0.003 mole) and 3 ml of dimethyl formamide were kept in an ice bath at 273 K and phosphorus oxychloride (0.024 mole) was added dropwise for 5 to 10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate as the eluent (99:1 v/v, Rf index of the title compound: 0.8336). The isolated title compound was recrystallized from dichloromethane to obtain 4-(cyclohexylsulfanyl) -1-[(E)-2-(cyclohexylsulfanyl)-1-phenylethenyl]-3 -phenyl-1H -pyrazole (title compound) and 4-(cyclohexyl sulfanyl)-1-[Z-2 -(cyclohexylsulfanyl)-1-phenyl-1-ethenyl]-3-phenyl-1H-pyrazole in 38% and 60% yield. The compounds identified through column are characterized by NMR studies (Manikannan, 2008).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule with thermal ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. The packing of the molecules in the unit cell viewed down the a axis.
4-(Cyclohexylsulfanyl)-1-[(E)-2-(cyclohexylsulfanyl)-1-phenylethenyl]-3-phenyl-1H-pyrazole top
Crystal data top
C29H34N2S2F(000) = 1016
Mr = 474.70Dx = 1.208 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2320 reflections
a = 6.3859 (5) Åθ = 1.4–30.3°
b = 19.1596 (17) ŵ = 0.22 mm1
c = 21.337 (2) ÅT = 293 K
V = 2610.7 (4) Å3Block, colorless
Z = 40.25 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7787 independent reflections
Radiation source: fine-focus sealed tube4945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 98
Tmin = 0.936, Tmax = 0.965k = 2727
19948 measured reflectionsl = 3021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.1893P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7787 reflectionsΔρmax = 0.31 e Å3
298 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 3381 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C29H34N2S2V = 2610.7 (4) Å3
Mr = 474.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3859 (5) ŵ = 0.22 mm1
b = 19.1596 (17) ÅT = 293 K
c = 21.337 (2) Å0.25 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7787 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4945 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.965Rint = 0.031
19948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.31 e Å3
S = 1.02Δρmin = 0.17 e Å3
7787 reflectionsAbsolute structure: Flack (1983), 3381 Friedel pairs
298 parametersAbsolute structure parameter: 0.01 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.40978 (12)0.48628 (4)0.39564 (3)0.0608 (2)
S20.40247 (11)0.64092 (3)0.23133 (3)0.05671 (18)
N10.8399 (3)0.61798 (10)0.36277 (10)0.0481 (5)
N20.8853 (3)0.56795 (10)0.32015 (9)0.0467 (4)
C30.7544 (4)0.57046 (13)0.27104 (12)0.0490 (5)
H30.75920.54160.23600.059*
C40.6130 (4)0.62265 (12)0.28137 (11)0.0480 (5)
C50.6735 (4)0.65155 (12)0.33978 (11)0.0466 (5)
C61.0582 (4)0.52201 (12)0.33064 (11)0.0450 (5)
C71.1971 (4)0.53826 (14)0.37473 (12)0.0532 (6)
H71.17950.58030.39590.064*
C81.4367 (4)0.51105 (14)0.47716 (13)0.0548 (6)
H81.44700.56200.47980.066*
C91.2542 (5)0.4872 (2)0.51640 (15)0.0790 (10)
H9A1.23770.43720.51170.095*
H9B1.12750.50930.50110.095*
C101.2808 (6)0.5042 (3)0.58490 (18)0.1023 (14)
H10A1.16380.48540.60850.123*
H10B1.28230.55440.59060.123*
C111.4836 (5)0.4733 (2)0.60921 (17)0.0874 (10)
H11A1.50420.48770.65240.105*
H11B1.47410.42280.60840.105*
C121.6674 (5)0.49605 (19)0.57090 (18)0.0821 (10)
H12A1.79250.47290.58620.098*
H12B1.68700.54600.57580.098*
C131.6387 (4)0.47926 (18)0.50208 (15)0.0691 (8)
H13A1.63500.42900.49650.083*
H13B1.75660.49740.47850.083*
C141.0638 (4)0.45828 (13)0.29141 (11)0.0477 (5)
C151.2456 (4)0.44122 (15)0.25948 (13)0.0584 (7)
H151.36170.47050.26140.070*
C161.2534 (5)0.38010 (18)0.22451 (14)0.0707 (8)
H161.37570.36830.20330.085*
C171.0840 (6)0.33739 (16)0.22097 (15)0.0765 (9)
H171.09040.29650.19750.092*
C180.9053 (6)0.35457 (15)0.25173 (15)0.0728 (8)
H180.78900.32550.24880.087*
C190.8942 (5)0.41443 (14)0.28721 (13)0.0589 (6)
H190.77130.42520.30850.071*
C200.5010 (4)0.71168 (13)0.18284 (13)0.0502 (6)
H200.52670.75240.20960.060*
C210.6984 (5)0.69469 (18)0.14829 (16)0.0715 (9)
H21A0.67790.65260.12380.086*
H21B0.81000.68600.17810.086*
C220.7614 (5)0.7546 (2)0.10494 (18)0.0823 (10)
H22A0.79650.79530.12990.099*
H22B0.88500.74130.08140.099*
C230.5874 (6)0.7732 (2)0.05995 (16)0.0823 (9)
H23A0.62850.81330.03510.099*
H23B0.56300.73440.03160.099*
C240.3890 (5)0.78953 (16)0.09496 (17)0.0755 (9)
H24A0.27760.79900.06530.091*
H24B0.40970.83100.12020.091*
C250.3260 (4)0.72955 (15)0.13670 (15)0.0613 (7)
H25A0.29470.68900.11120.074*
H25B0.20040.74190.15970.074*
C260.5914 (4)0.71108 (11)0.37568 (11)0.0478 (5)
C270.3886 (5)0.73724 (14)0.36781 (15)0.0626 (7)
H270.29790.71650.33920.075*
C280.3239 (5)0.79383 (15)0.40263 (17)0.0736 (9)
H280.19050.81190.39610.088*
C290.4492 (6)0.82374 (16)0.44595 (16)0.0739 (9)
H290.40200.86170.46920.089*
C300.6466 (6)0.79767 (16)0.45541 (16)0.0755 (9)
H300.73350.81750.48550.091*
C310.7160 (5)0.74201 (14)0.42013 (14)0.0625 (7)
H310.85060.72500.42660.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0537 (3)0.0746 (4)0.0542 (4)0.0223 (3)0.0076 (3)0.0031 (3)
S20.0476 (3)0.0660 (4)0.0565 (4)0.0031 (3)0.0134 (3)0.0156 (3)
N10.0514 (11)0.0490 (10)0.0439 (11)0.0077 (8)0.0057 (9)0.0028 (9)
N20.0481 (11)0.0523 (10)0.0396 (10)0.0112 (9)0.0039 (9)0.0015 (8)
C30.0512 (13)0.0583 (13)0.0375 (12)0.0060 (11)0.0024 (11)0.0043 (11)
C40.0468 (12)0.0525 (12)0.0446 (13)0.0036 (10)0.0073 (11)0.0103 (10)
C50.0483 (12)0.0474 (12)0.0440 (13)0.0046 (10)0.0028 (10)0.0095 (10)
C60.0436 (12)0.0500 (12)0.0413 (12)0.0083 (10)0.0026 (10)0.0077 (10)
C70.0522 (14)0.0550 (13)0.0524 (15)0.0113 (11)0.0070 (12)0.0019 (12)
C80.0525 (14)0.0580 (13)0.0539 (14)0.0098 (11)0.0140 (12)0.0015 (12)
C90.0445 (14)0.131 (3)0.0620 (19)0.0160 (17)0.0067 (13)0.0031 (19)
C100.076 (2)0.172 (4)0.059 (2)0.041 (3)0.0054 (18)0.001 (2)
C110.073 (2)0.124 (3)0.065 (2)0.014 (2)0.0145 (18)0.017 (2)
C120.0695 (19)0.091 (2)0.085 (2)0.0139 (17)0.0374 (18)0.0172 (19)
C130.0418 (15)0.091 (2)0.075 (2)0.0011 (13)0.0132 (13)0.0102 (17)
C140.0514 (13)0.0534 (12)0.0383 (12)0.0087 (11)0.0007 (10)0.0052 (10)
C150.0529 (14)0.0738 (17)0.0485 (15)0.0122 (12)0.0076 (12)0.0020 (13)
C160.0710 (18)0.089 (2)0.0520 (17)0.0305 (17)0.0058 (15)0.0081 (15)
C170.095 (2)0.0715 (18)0.0629 (19)0.0181 (19)0.008 (2)0.0199 (15)
C180.078 (2)0.0649 (17)0.076 (2)0.0043 (16)0.0062 (19)0.0089 (15)
C190.0571 (14)0.0597 (14)0.0598 (16)0.0037 (13)0.0053 (14)0.0028 (12)
C200.0465 (12)0.0551 (13)0.0489 (14)0.0034 (10)0.0100 (11)0.0050 (11)
C210.0566 (16)0.094 (2)0.0641 (19)0.0183 (15)0.0000 (15)0.0214 (17)
C220.0532 (16)0.115 (3)0.079 (2)0.0054 (17)0.0047 (16)0.034 (2)
C230.082 (2)0.101 (2)0.0641 (19)0.003 (2)0.0034 (19)0.0330 (17)
C240.0654 (18)0.0767 (19)0.084 (2)0.0102 (16)0.0185 (18)0.0206 (16)
C250.0490 (14)0.0675 (16)0.0673 (18)0.0021 (12)0.0159 (13)0.0154 (14)
C260.0527 (13)0.0439 (11)0.0469 (13)0.0055 (11)0.0008 (11)0.0104 (10)
C270.0570 (15)0.0603 (15)0.0705 (18)0.0097 (13)0.0064 (15)0.0051 (13)
C280.075 (2)0.0659 (17)0.080 (2)0.0235 (15)0.0031 (18)0.0023 (16)
C290.095 (2)0.0579 (16)0.069 (2)0.0210 (16)0.0033 (19)0.0031 (15)
C300.094 (2)0.0654 (18)0.067 (2)0.0087 (16)0.0096 (17)0.0061 (15)
C310.0674 (18)0.0601 (16)0.0600 (17)0.0098 (14)0.0075 (14)0.0014 (13)
Geometric parameters (Å, º) top
S1—C71.742 (2)C16—C171.359 (5)
S1—C81.811 (3)C16—H160.9300
S2—C41.752 (2)C17—C181.357 (5)
S2—C201.818 (3)C17—H170.9300
N1—C51.335 (3)C18—C191.376 (4)
N1—N21.353 (3)C18—H180.9300
N2—C31.341 (3)C19—H190.9300
N2—C61.429 (3)C20—C211.496 (4)
C3—C41.365 (3)C20—C251.528 (3)
C3—H30.9300C20—H200.9800
C4—C51.417 (3)C21—C221.529 (4)
C5—C261.471 (3)C21—H21A0.9700
C6—C71.330 (3)C21—H21B0.9700
C6—C141.481 (3)C22—C231.511 (4)
C7—H70.9300C22—H22A0.9700
C8—C91.506 (4)C22—H22B0.9700
C8—C131.522 (4)C23—C241.504 (5)
C8—H80.9800C23—H23A0.9700
C9—C101.507 (5)C23—H23B0.9700
C9—H9A0.9700C24—C251.508 (4)
C9—H9B0.9700C24—H24A0.9700
C10—C111.515 (5)C24—H24B0.9700
C10—H10A0.9700C25—H25A0.9700
C10—H10B0.9700C25—H25B0.9700
C11—C121.495 (5)C26—C311.373 (4)
C11—H11A0.9700C26—C271.399 (4)
C11—H11B0.9700C27—C281.378 (4)
C12—C131.514 (5)C27—H270.9300
C12—H12A0.9700C28—C291.350 (5)
C12—H12B0.9700C28—H280.9300
C13—H13A0.9700C29—C301.371 (5)
C13—H13B0.9700C29—H290.9300
C14—C191.374 (4)C30—C311.379 (4)
C14—C151.385 (3)C30—H300.9300
C15—C161.390 (4)C31—H310.9300
C15—H150.9300
C7—S1—C899.80 (12)C15—C16—H16119.7
C4—S2—C20103.31 (11)C18—C17—C16119.8 (3)
C5—N1—N2105.4 (2)C18—C17—H17120.1
C3—N2—N1111.50 (19)C16—C17—H17120.1
C3—N2—C6128.7 (2)C17—C18—C19120.8 (3)
N1—N2—C6119.76 (19)C17—C18—H18119.6
N2—C3—C4108.2 (2)C19—C18—H18119.6
N2—C3—H3125.9C14—C19—C18120.3 (3)
C4—C3—H3125.9C14—C19—H19119.8
C3—C4—C5104.3 (2)C18—C19—H19119.8
C3—C4—S2123.7 (2)C21—C20—C25110.3 (2)
C5—C4—S2131.83 (19)C21—C20—S2114.20 (19)
N1—C5—C4110.6 (2)C25—C20—S2106.29 (18)
N1—C5—C26117.8 (2)C21—C20—H20108.6
C4—C5—C26131.6 (2)C25—C20—H20108.6
C7—C6—N2118.8 (2)S2—C20—H20108.6
C7—C6—C14125.2 (2)C20—C21—C22110.9 (3)
N2—C6—C14116.0 (2)C20—C21—H21A109.5
C6—C7—S1124.6 (2)C22—C21—H21A109.5
C6—C7—H7117.7C20—C21—H21B109.5
S1—C7—H7117.7C22—C21—H21B109.5
C9—C8—C13109.9 (2)H21A—C21—H21B108.0
C9—C8—S1112.4 (2)C23—C22—C21111.6 (3)
C13—C8—S1108.1 (2)C23—C22—H22A109.3
C9—C8—H8108.8C21—C22—H22A109.3
C13—C8—H8108.8C23—C22—H22B109.3
S1—C8—H8108.8C21—C22—H22B109.3
C8—C9—C10112.8 (3)H22A—C22—H22B108.0
C8—C9—H9A109.0C24—C23—C22110.7 (3)
C10—C9—H9A109.0C24—C23—H23A109.5
C8—C9—H9B109.0C22—C23—H23A109.5
C10—C9—H9B109.0C24—C23—H23B109.5
H9A—C9—H9B107.8C22—C23—H23B109.5
C9—C10—C11110.1 (3)H23A—C23—H23B108.1
C9—C10—H10A109.6C23—C24—C25111.0 (3)
C11—C10—H10A109.6C23—C24—H24A109.4
C9—C10—H10B109.6C25—C24—H24A109.4
C11—C10—H10B109.6C23—C24—H24B109.4
H10A—C10—H10B108.1C25—C24—H24B109.4
C12—C11—C10111.7 (3)H24A—C24—H24B108.0
C12—C11—H11A109.3C24—C25—C20110.9 (2)
C10—C11—H11A109.3C24—C25—H25A109.5
C12—C11—H11B109.3C20—C25—H25A109.5
C10—C11—H11B109.3C24—C25—H25B109.5
H11A—C11—H11B107.9C20—C25—H25B109.5
C11—C12—C13111.9 (3)H25A—C25—H25B108.1
C11—C12—H12A109.2C31—C26—C27117.7 (2)
C13—C12—H12A109.2C31—C26—C5119.2 (2)
C11—C12—H12B109.2C27—C26—C5123.1 (2)
C13—C12—H12B109.2C28—C27—C26119.7 (3)
H12A—C12—H12B107.9C28—C27—H27120.2
C12—C13—C8110.9 (3)C26—C27—H27120.2
C12—C13—H13A109.5C29—C28—C27121.7 (3)
C8—C13—H13A109.5C29—C28—H28119.1
C12—C13—H13B109.5C27—C28—H28119.1
C8—C13—H13B109.5C28—C29—C30119.4 (3)
H13A—C13—H13B108.1C28—C29—H29120.3
C19—C14—C15119.0 (2)C30—C29—H29120.3
C19—C14—C6121.5 (2)C29—C30—C31119.8 (3)
C15—C14—C6119.5 (2)C29—C30—H30120.1
C14—C15—C16119.5 (3)C31—C30—H30120.1
C14—C15—H15120.2C26—C31—C30121.7 (3)
C16—C15—H15120.2C26—C31—H31119.2
C17—C16—C15120.6 (3)C30—C31—H31119.2
C17—C16—H16119.7
C5—N1—N2—C31.2 (3)C7—C6—C14—C1551.7 (4)
C5—N1—N2—C6179.9 (2)N2—C6—C14—C15129.7 (2)
N1—N2—C3—C41.5 (3)C19—C14—C15—C160.6 (4)
C6—N2—C3—C4179.9 (2)C6—C14—C15—C16177.7 (2)
N2—C3—C4—C51.1 (3)C14—C15—C16—C170.6 (4)
N2—C3—C4—S2175.90 (18)C15—C16—C17—C180.1 (5)
C20—S2—C4—C396.9 (2)C16—C17—C18—C190.8 (5)
C20—S2—C4—C586.9 (3)C15—C14—C19—C180.1 (4)
N2—N1—C5—C40.4 (3)C6—C14—C19—C18178.3 (3)
N2—N1—C5—C26178.1 (2)C17—C18—C19—C140.8 (5)
C3—C4—C5—N10.5 (3)C4—S2—C20—C2157.0 (2)
S2—C4—C5—N1176.23 (19)C4—S2—C20—C25178.85 (19)
C3—C4—C5—C26176.9 (3)C25—C20—C21—C2256.0 (4)
S2—C4—C5—C266.4 (4)S2—C20—C21—C22175.7 (2)
C3—N2—C6—C7164.4 (2)C20—C21—C22—C2355.8 (4)
N1—N2—C6—C714.1 (3)C21—C22—C23—C2455.3 (4)
C3—N2—C6—C1416.9 (3)C22—C23—C24—C2556.3 (4)
N1—N2—C6—C14164.5 (2)C23—C24—C25—C2057.3 (4)
N2—C6—C7—S1177.14 (18)C21—C20—C25—C2457.3 (3)
C14—C6—C7—S11.4 (4)S2—C20—C25—C24178.4 (2)
C8—S1—C7—C6150.7 (2)N1—C5—C26—C3118.0 (3)
C7—S1—C8—C967.3 (2)C4—C5—C26—C31159.2 (3)
C7—S1—C8—C13171.3 (2)N1—C5—C26—C27160.5 (2)
C13—C8—C9—C1056.4 (4)C4—C5—C26—C2722.3 (4)
S1—C8—C9—C10176.9 (3)C31—C26—C27—C282.3 (4)
C8—C9—C10—C1155.9 (5)C5—C26—C27—C28179.1 (3)
C9—C10—C11—C1254.5 (5)C26—C27—C28—C292.1 (5)
C10—C11—C12—C1355.3 (4)C27—C28—C29—C300.5 (5)
C11—C12—C13—C855.5 (4)C28—C29—C30—C310.9 (5)
C9—C8—C13—C1255.1 (3)C27—C26—C31—C301.0 (4)
S1—C8—C13—C12178.1 (2)C5—C26—C31—C30179.6 (3)
C7—C6—C14—C19126.5 (3)C29—C30—C31—C260.6 (5)
N2—C6—C14—C1952.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.402.760 (4)103
C27—H27···S20.932.803.450 (4)128
C31—H31···N10.932.462.786 (4)101

Experimental details

Crystal data
Chemical formulaC29H34N2S2
Mr474.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.3859 (5), 19.1596 (17), 21.337 (2)
V3)2610.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.936, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
19948, 7787, 4945
Rint0.031
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.02
No. of reflections7787
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17
Absolute structureFlack (1983), 3381 Friedel pairs
Absolute structure parameter0.01 (8)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.402.760 (4)103
C27—H27···S20.932.803.450 (4)128
C31—H31···N10.932.462.786 (4)101
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help in data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–166.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationManikannan, R. (2008). PhD thesis, Madurai Kamaraj University, Madurai, India.  Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2132-o2133
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds