supplementary materials


Acta Cryst. (2008). E64, o2459    [ doi:10.1107/S1600536808039044 ]

(E)-N'-(4-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide

Y.-M. Wang, Z.-D. Zhao, Y.-X. Chen and L.-W. Bi

Abstract top

The title compound, C17H17ClN2O4, was synthesized from 3,4,5-trimethoxybenzohydrazide and 4-chlorobenzaldehyde. In the crystal structure, packing is stabilized by intramolecular C-H...O and intermolecular N-H...O and C-H...O hydrogen-bonding interactions.

Comment top

3,4,5-Trimethoxybenzohydrazide and their deviatives show moderate fungicidal and anti-bacterial activities (Gardner et al., 1991). The antibacterial activity of formylhydrazines and formylhydrazones has been reported by Labouta et al. (1989). Many derivatives of formylhydrazines have interesting biological properties. So we synthesized several derivatives of 3,4,5-trimethoxybenzohydrazide. In our previous paper we have reported the crystal structure of (E)—N'-(2-hydroxybenzylidene)-3,4,5-trimethoxybenzohydrazide (Wang et al., 2008). Now we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. All bond lengths and angles in (I) are normal (Allen et al., 1987). In the crystal structure, there exist intramolecular C—H···O, and intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2).

Related literature top

For related literature, see: Yang et al. (1996); Nawar et al. (2000); Gardner et al. (1991); Labouta et al. (1989); Wang et al. (2008); Allen et al. (1987). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···. etc. Please revise this section as indicated.

Experimental top

An ethanol solution (50 ml) of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and 4-chlorobenzaldehyde (0.01 mol) was refluxed and stirred for 2 h; the mixture was cooled and the resulting solid product, (I), was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in THF.

Refinement top

All H atoms were placed geometrically with C—H= 0.93–0.96 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title structure.
(E)-N'-(4-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide top
Crystal data top
C17H17ClN2O4Z = 2
Mr = 348.78F(000) = 364
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.119 (2) ÅCell parameters from 2557 reflections
b = 8.210 (4) Åθ = 2.6–28.3°
c = 20.276 (9) ŵ = 0.26 mm1
α = 101.055 (7)°T = 273 K
β = 92.362 (7)°Block, yellow
γ = 101.459 (7)°0.12 × 0.10 × 0.06 mm
V = 816.9 (7) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
graphiteRint = 0.017
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.970, Tmax = 0.985k = 99
4307 measured reflectionsl = 1824
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.4783P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2860 reflectionsΔρmax = 0.59 e Å3
218 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (5)
Crystal data top
C17H17ClN2O4γ = 101.459 (7)°
Mr = 348.78V = 816.9 (7) Å3
Triclinic, P1Z = 2
a = 5.119 (2) ÅMo Kα radiation
b = 8.210 (4) ŵ = 0.26 mm1
c = 20.276 (9) ÅT = 273 K
α = 101.055 (7)°0.12 × 0.10 × 0.06 mm
β = 92.362 (7)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2497 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.017
4307 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.59 e Å3
S = 1.03Δρmin = 0.39 e Å3
2860 reflectionsAbsolute structure: ?
218 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98386 (15)0.10593 (8)0.26691 (3)0.0637 (2)
O10.5118 (3)0.4117 (2)0.66278 (7)0.0510 (4)
O20.5848 (4)0.5136 (2)0.92020 (8)0.0634 (5)
O30.9795 (4)0.7795 (3)0.95374 (9)0.0883 (7)
O41.3253 (4)0.8754 (2)0.86389 (9)0.0703 (6)
N10.8782 (3)0.3395 (2)0.57654 (8)0.0396 (4)
N20.9449 (3)0.4260 (2)0.64227 (8)0.0393 (4)
H21.10990.46300.65720.047*
C10.8360 (4)0.5329 (2)0.75470 (9)0.0365 (4)
C20.6692 (4)0.4815 (3)0.80214 (10)0.0408 (5)
H2A0.51690.39610.78880.049*
C30.7298 (4)0.5574 (3)0.86935 (10)0.0457 (5)
C40.9504 (5)0.6916 (3)0.88879 (11)0.0520 (6)
C51.1177 (4)0.7419 (3)0.84062 (11)0.0480 (5)
C61.0627 (4)0.6603 (3)0.77344 (10)0.0412 (5)
H61.17710.69090.74140.049*
C70.3631 (6)0.3744 (4)0.90386 (13)0.0673 (7)
H7A0.23450.39940.87360.101*
H7B0.28210.35490.94430.101*
H7C0.42250.27480.88270.101*
C81.2015 (8)0.7925 (6)0.99320 (16)0.1086 (14)
H8A1.20110.68601.00610.163*
H8B1.20730.87911.03280.163*
H8C1.35540.82200.96900.163*
C91.5185 (5)0.9198 (3)0.81913 (13)0.0563 (6)
H9A1.58260.82110.79900.084*
H9B1.66511.00470.84350.084*
H9C1.43920.96390.78450.084*
C100.7487 (4)0.4520 (2)0.68292 (10)0.0363 (4)
C111.0749 (4)0.3316 (3)0.54076 (10)0.0421 (5)
H111.24480.39150.55850.050*
C121.0395 (4)0.2302 (3)0.47225 (10)0.0378 (4)
C131.2396 (5)0.2560 (3)0.42946 (11)0.0527 (6)
H131.38980.34240.44380.063*
C141.2205 (5)0.1556 (3)0.36576 (11)0.0542 (6)
H141.35530.17490.33710.065*
C151.0009 (5)0.0277 (3)0.34555 (10)0.0433 (5)
C160.7968 (5)0.0006 (3)0.38638 (12)0.0540 (6)
H160.64710.08710.37170.065*
C170.8181 (4)0.1019 (3)0.44969 (11)0.0488 (5)
H170.68030.08410.47770.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0910 (5)0.0539 (4)0.0397 (3)0.0153 (3)0.0094 (3)0.0077 (3)
O10.0337 (8)0.0722 (11)0.0394 (8)0.0075 (7)0.0002 (6)0.0034 (7)
O20.0650 (11)0.0788 (12)0.0361 (9)0.0015 (9)0.0168 (7)0.0009 (8)
O30.0691 (12)0.1269 (19)0.0400 (10)0.0058 (12)0.0062 (9)0.0264 (11)
O40.0600 (11)0.0767 (12)0.0477 (10)0.0183 (9)0.0098 (8)0.0190 (8)
N10.0417 (9)0.0440 (9)0.0293 (8)0.0095 (7)0.0003 (7)0.0018 (7)
N20.0339 (8)0.0504 (10)0.0288 (8)0.0084 (7)0.0004 (6)0.0029 (7)
C10.0368 (10)0.0400 (10)0.0318 (10)0.0128 (8)0.0031 (8)0.0002 (8)
C20.0386 (11)0.0433 (11)0.0361 (11)0.0070 (9)0.0043 (8)0.0009 (9)
C30.0458 (12)0.0555 (13)0.0341 (11)0.0120 (10)0.0102 (9)0.0027 (9)
C40.0493 (12)0.0641 (15)0.0329 (11)0.0084 (11)0.0046 (9)0.0106 (10)
C50.0415 (11)0.0534 (13)0.0393 (11)0.0042 (10)0.0022 (9)0.0080 (10)
C60.0380 (11)0.0472 (12)0.0343 (10)0.0081 (9)0.0062 (8)0.0015 (9)
C70.0720 (17)0.0708 (17)0.0523 (15)0.0019 (14)0.0221 (13)0.0100 (13)
C80.092 (2)0.168 (4)0.0460 (17)0.008 (2)0.0029 (16)0.005 (2)
C90.0467 (13)0.0550 (14)0.0567 (14)0.0008 (10)0.0047 (11)0.0024 (11)
C100.0349 (10)0.0385 (10)0.0331 (10)0.0072 (8)0.0017 (8)0.0020 (8)
C110.0402 (11)0.0479 (12)0.0333 (10)0.0037 (9)0.0022 (8)0.0024 (9)
C120.0421 (11)0.0393 (10)0.0314 (10)0.0108 (8)0.0033 (8)0.0037 (8)
C130.0483 (13)0.0572 (14)0.0417 (12)0.0043 (10)0.0096 (10)0.0020 (10)
C140.0599 (14)0.0586 (14)0.0400 (12)0.0062 (11)0.0178 (10)0.0033 (10)
C150.0584 (13)0.0389 (11)0.0329 (10)0.0161 (9)0.0037 (9)0.0019 (8)
C160.0534 (13)0.0481 (13)0.0493 (13)0.0013 (10)0.0046 (10)0.0054 (10)
C170.0457 (12)0.0510 (13)0.0425 (12)0.0015 (10)0.0118 (9)0.0013 (10)
Geometric parameters (Å, °) top
Cl1—C151.742 (2)C7—H7A0.9600
O1—C101.223 (2)C7—H7B0.9600
O2—C31.357 (3)C7—H7C0.9600
O2—C71.419 (3)C8—H8A0.9600
O3—C81.337 (4)C8—H8B0.9600
O3—C41.362 (3)C8—H8C0.9600
O4—C51.361 (3)C9—H9A0.9600
O4—C91.411 (3)C9—H9B0.9600
N1—C111.270 (3)C9—H9C0.9600
N1—N21.379 (2)C11—C121.460 (3)
N2—C101.349 (3)C11—H110.9300
N2—H20.8600C12—C171.379 (3)
C1—C21.383 (3)C12—C131.380 (3)
C1—C61.383 (3)C13—C141.381 (3)
C1—C101.489 (3)C13—H130.9300
C2—C31.380 (3)C14—C151.365 (3)
C2—H2A0.9300C14—H140.9300
C3—C41.395 (3)C15—C161.371 (3)
C4—C51.393 (3)C16—C171.381 (3)
C5—C61.388 (3)C16—H160.9300
C6—H60.9300C17—H170.9300
C3—O2—C7117.98 (18)O3—C8—H8C109.5
C8—O3—C4120.7 (3)H8A—C8—H8C109.5
C5—O4—C9118.23 (18)H8B—C8—H8C109.5
C11—N1—N2114.90 (17)O4—C9—H9A109.5
C10—N2—N1119.35 (16)O4—C9—H9B109.5
C10—N2—H2120.3H9A—C9—H9B109.5
N1—N2—H2120.3O4—C9—H9C109.5
C2—C1—C6121.06 (18)H9A—C9—H9C109.5
C2—C1—C10116.43 (18)H9B—C9—H9C109.5
C6—C1—C10122.40 (18)O1—C10—N2122.65 (18)
C3—C2—C1119.68 (19)O1—C10—C1121.16 (17)
C3—C2—H2A120.2N2—C10—C1116.20 (17)
C1—C2—H2A120.2N1—C11—C12121.29 (19)
O2—C3—C2124.6 (2)N1—C11—H11119.4
O2—C3—C4115.37 (19)C12—C11—H11119.4
C2—C3—C4120.01 (19)C17—C12—C13118.34 (19)
O3—C4—C5122.0 (2)C17—C12—C11122.11 (18)
O3—C4—C3118.0 (2)C13—C12—C11119.44 (19)
C5—C4—C3119.73 (19)C12—C13—C14121.1 (2)
O4—C5—C6124.2 (2)C12—C13—H13119.4
O4—C5—C4115.72 (19)C14—C13—H13119.4
C6—C5—C4120.0 (2)C15—C14—C13119.0 (2)
C1—C6—C5119.33 (19)C15—C14—H14120.5
C1—C6—H6120.3C13—C14—H14120.5
C5—C6—H6120.3C14—C15—C16121.5 (2)
O2—C7—H7A109.5C14—C15—Cl1119.15 (17)
O2—C7—H7B109.5C16—C15—Cl1119.30 (17)
H7A—C7—H7B109.5C15—C16—C17118.7 (2)
O2—C7—H7C109.5C15—C16—H16120.7
H7A—C7—H7C109.5C17—C16—H16120.7
H7B—C7—H7C109.5C12—C17—C16121.3 (2)
O3—C8—H8A109.5C12—C17—H17119.3
O3—C8—H8B109.5C16—C17—H17119.3
H8A—C8—H8B109.5
C11—N1—N2—C10175.22 (19)O4—C5—C6—C1175.8 (2)
C6—C1—C2—C30.3 (3)C4—C5—C6—C12.2 (3)
C10—C1—C2—C3176.58 (19)N1—N2—C10—O15.0 (3)
C7—O2—C3—C23.4 (4)N1—N2—C10—C1174.86 (16)
C7—O2—C3—C4178.0 (2)C2—C1—C10—O133.9 (3)
C1—C2—C3—O2178.0 (2)C6—C1—C10—O1142.3 (2)
C1—C2—C3—C43.4 (3)C2—C1—C10—N2145.93 (19)
C8—O3—C4—C563.6 (4)C6—C1—C10—N237.9 (3)
C8—O3—C4—C3122.7 (3)N2—N1—C11—C12173.85 (18)
O2—C3—C4—O38.6 (3)N1—C11—C12—C1719.4 (3)
C2—C3—C4—O3170.1 (2)N1—C11—C12—C13164.4 (2)
O2—C3—C4—C5177.6 (2)C17—C12—C13—C140.4 (4)
C2—C3—C4—C53.7 (4)C11—C12—C13—C14176.0 (2)
C9—O4—C5—C69.0 (4)C12—C13—C14—C150.8 (4)
C9—O4—C5—C4172.9 (2)C13—C14—C15—C161.5 (4)
O3—C4—C5—O45.4 (4)C13—C14—C15—Cl1176.79 (19)
C3—C4—C5—O4179.0 (2)C14—C15—C16—C171.0 (4)
O3—C4—C5—C6172.7 (2)Cl1—C15—C16—C17177.36 (19)
C3—C4—C5—C60.9 (4)C13—C12—C17—C161.0 (3)
C2—C1—C6—C52.5 (3)C11—C12—C17—C16175.3 (2)
C10—C1—C6—C5173.5 (2)C15—C16—C17—C120.3 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.182.943 (3)147
C8—H8C···O40.962.262.896 (4)123
C11—H11···O1i0.932.433.145 (3)134
C16—H16···O1ii0.932.573.368 (3)144
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.182.943 (3)147
C8—H8C···O40.962.262.896 (4)123
C11—H11···O1i0.932.433.145 (3)134
C16—H16···O1ii0.932.573.368 (3)144
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1.
Acknowledgements top

This work was supported by the Natural Science Fund of Jiangsu Province (No. BK2006011).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (1997). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.

Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514–1530.

Labouta, I. M., Hassan, A. M., Aboulwafa, O. M. & Kader, O. (1989). Monatsh. Chem. 120, 571–574.

Nawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1–8.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Y.-M., Zhao, Z.-D., Chen, Y.-X. & Bi, L.-W. (2008). Acta Cryst. E64, o1009.

Yang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749–3753.