supplementary materials


Acta Cryst. (2008). E64, o2412    [ doi:10.1107/S1600536808038270 ]

Benzaldehyde thiosemicarbazone

L. Kong, Y. Qiao, J.-D. Zhang and X.-P. Ju

Abstract top

The title compound, C8H9N3S, contains two molecules in the asymmetric unit. One molecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms), while the other exhibits a dihedral angle of 21.7 (1)° between the benzene ring and the mean plane of the thiosemicarbazone unit. Intermolecular N-H...S hydrogen bonds link the molecules into layers parallel to the (010) plane.

Comment top

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, often exhibit strong biological activity and are important compounds for drug design (Beraldo & Gambino, 2004), organocatalysis and the preparation of heterocyclic rings (Bondock et al., 2007).

Related literature top

For background literature concerning arylhydrazone compounds, see: Beraldo & Gambino (2004); Bondock et al. (2007). For the related 2,4-dichlorobenzylidene compound, see: Jing et al. (2006).

Experimental top

Benzaldehyde (0.3 mmol), thiosemicarbazide (0.3 mmol) and 10 ml water were mixed in a 50 ml flask. After stirring for 30 min at 373 K, the resulting mixture was recrystallized from ethanol, affording the title compound as colourless crystals. Elemental analysis: calculated C 53.61, H 5.06, N 23.44%; found: C 53.58, H 5.55, N 23.51%.

Refinement top

H atoms were placed in geometrically idealized positions (N—H = 0.86, C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two molecules in the asymmetric unit of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.
Benzaldehyde thiosemicarbazone top
Crystal data top
C8H9N3SZ = 4
Mr = 179.24F(000) = 376
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8692 (13) ÅCell parameters from 1310 reflections
b = 12.513 (2) Åθ = 2.9–25.0°
c = 13.519 (2) ŵ = 0.31 mm1
α = 112.735 (3)°T = 298 K
β = 95.384 (2)°Block, orange
γ = 96.153 (2)°0.24 × 0.13 × 0.10 mm
V = 900.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
graphiteRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.930, Tmax = 0.970k = 1214
4740 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0856P)2]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H9N3Sγ = 96.153 (2)°
Mr = 179.24V = 900.4 (3) Å3
Triclinic, P1Z = 4
a = 5.8692 (13) ÅMo Kα radiation
b = 12.513 (2) ŵ = 0.31 mm1
c = 13.519 (2) ÅT = 298 K
α = 112.735 (3)°0.24 × 0.13 × 0.10 mm
β = 95.384 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1846 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.970Rint = 0.039
4740 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.31 e Å3
S = 0.95Δρmin = 0.27 e Å3
3124 reflectionsAbsolute structure: ?
217 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9674 (5)0.8260 (3)0.9684 (2)0.0484 (8)
N21.1667 (5)0.8822 (3)0.9512 (2)0.0504 (8)
H21.29340.89990.99560.061*
N30.9536 (5)0.8863 (3)0.8034 (2)0.0550 (9)
H3A0.83310.85630.82080.066*
H3B0.94140.90200.74670.066*
N40.3374 (5)0.7659 (3)0.4823 (2)0.0486 (8)
N50.4649 (5)0.8653 (3)0.5625 (2)0.0518 (8)
H50.42000.89500.62490.062*
N60.7036 (6)0.8737 (3)0.4423 (3)0.0612 (10)
H6A0.60920.81660.39300.073*
H6B0.82620.90310.42590.073*
S11.40293 (17)0.96409 (10)0.83250 (8)0.0561 (3)
S20.83277 (19)1.02721 (9)0.64490 (8)0.0610 (4)
C10.9813 (7)0.8063 (3)1.0543 (3)0.0500 (9)
H11.11690.83411.10400.060*
C20.7837 (7)0.7398 (3)1.0749 (3)0.0493 (10)
C30.5747 (7)0.7039 (3)1.0076 (3)0.0569 (10)
H30.55660.72290.94750.068*
C40.3920 (8)0.6403 (4)1.0277 (4)0.0660 (12)
H40.25160.61670.98140.079*
C50.4178 (9)0.6118 (4)1.1169 (4)0.0700 (13)
H5A0.29500.56901.13090.084*
C60.6255 (9)0.6472 (4)1.1845 (4)0.0675 (12)
H60.64310.62831.24470.081*
C70.8081 (8)0.7104 (3)1.1640 (3)0.0584 (11)
H70.94860.73361.21000.070*
C81.1574 (6)0.9084 (3)0.8637 (3)0.0438 (9)
C90.1484 (7)0.7251 (3)0.5034 (3)0.0484 (9)
H90.09690.76580.56870.058*
C100.0129 (6)0.6152 (3)0.4263 (3)0.0455 (9)
C110.2018 (7)0.5775 (4)0.4462 (4)0.0607 (11)
H110.26220.62460.50650.073*
C120.3267 (8)0.4700 (4)0.3766 (4)0.0695 (13)
H120.47160.44530.38980.083*
C130.2378 (9)0.4002 (4)0.2889 (4)0.0736 (13)
H130.32050.32700.24350.088*
C140.0287 (9)0.4368 (4)0.2671 (4)0.0730 (13)
H140.02870.38930.20600.088*
C150.0981 (7)0.5436 (3)0.3350 (3)0.0576 (11)
H150.24100.56800.31980.069*
C160.6604 (6)0.9162 (3)0.5434 (3)0.0443 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0460 (19)0.0479 (18)0.0522 (19)0.0088 (15)0.0119 (15)0.0195 (15)
N20.0434 (18)0.056 (2)0.0511 (19)0.0056 (15)0.0037 (15)0.0225 (16)
N30.0415 (19)0.072 (2)0.0521 (19)0.0021 (16)0.0018 (16)0.0296 (17)
N40.0452 (19)0.0479 (18)0.0471 (18)0.0024 (15)0.0008 (15)0.0170 (15)
N50.048 (2)0.0513 (19)0.0488 (19)0.0080 (15)0.0049 (15)0.0170 (15)
N60.055 (2)0.063 (2)0.055 (2)0.0165 (17)0.0107 (17)0.0171 (17)
S10.0434 (6)0.0700 (7)0.0494 (6)0.0008 (5)0.0081 (5)0.0196 (5)
S20.0595 (7)0.0634 (7)0.0504 (6)0.0189 (5)0.0037 (5)0.0224 (5)
C10.054 (2)0.046 (2)0.049 (2)0.0123 (19)0.0080 (19)0.0165 (18)
C20.060 (3)0.039 (2)0.047 (2)0.0102 (19)0.014 (2)0.0133 (17)
C30.058 (3)0.057 (3)0.056 (2)0.012 (2)0.004 (2)0.023 (2)
C40.054 (3)0.060 (3)0.082 (3)0.013 (2)0.011 (2)0.024 (2)
C50.078 (3)0.053 (3)0.083 (3)0.010 (2)0.033 (3)0.028 (2)
C60.088 (4)0.058 (3)0.060 (3)0.011 (3)0.021 (3)0.026 (2)
C70.071 (3)0.048 (2)0.050 (2)0.004 (2)0.006 (2)0.0163 (19)
C80.044 (2)0.043 (2)0.040 (2)0.0094 (17)0.0079 (18)0.0112 (17)
C90.044 (2)0.050 (2)0.051 (2)0.0031 (18)0.0108 (18)0.0215 (18)
C100.039 (2)0.044 (2)0.054 (2)0.0005 (16)0.0022 (17)0.0224 (18)
C110.049 (2)0.062 (3)0.074 (3)0.001 (2)0.013 (2)0.032 (2)
C120.047 (3)0.070 (3)0.094 (4)0.012 (2)0.001 (2)0.043 (3)
C130.078 (3)0.048 (3)0.081 (3)0.012 (2)0.015 (3)0.022 (2)
C140.078 (3)0.062 (3)0.066 (3)0.002 (3)0.005 (3)0.015 (2)
C150.052 (2)0.053 (2)0.063 (3)0.000 (2)0.007 (2)0.020 (2)
C160.044 (2)0.044 (2)0.048 (2)0.0003 (17)0.0004 (18)0.0248 (18)
Geometric parameters (Å, °) top
N1—C11.274 (5)C3—H30.930
N1—N21.385 (4)C4—C51.384 (6)
N2—C81.342 (5)C4—H40.930
N2—H20.860C5—C61.371 (7)
N3—C81.320 (5)C5—H5A0.930
N3—H3A0.860C6—C71.377 (6)
N3—H3B0.860C6—H60.930
N4—C91.274 (5)C7—H70.930
N4—N51.375 (4)C9—C101.453 (5)
N5—C161.347 (4)C9—H90.930
N5—H50.860C10—C111.385 (5)
N6—C161.321 (4)C10—C151.390 (5)
N6—H6A0.860C11—C121.383 (6)
N6—H6B0.860C11—H110.930
S1—C81.693 (4)C12—C131.362 (6)
S2—C161.674 (4)C12—H120.930
C1—C21.466 (5)C13—C141.362 (6)
C1—H10.930C13—H130.930
C2—C31.375 (5)C14—C151.376 (6)
C2—C71.388 (5)C14—H140.930
C3—C41.377 (6)C15—H150.930
C1—N1—N2116.5 (3)C7—C6—H6119.8
C8—N2—N1118.4 (3)C6—C7—C2120.4 (4)
C8—N2—H2120.8C6—C7—H7119.8
N1—N2—H2120.8C2—C7—H7119.8
C8—N3—H3A120.0N3—C8—N2117.6 (3)
C8—N3—H3B120.0N3—C8—S1122.5 (3)
H3A—N3—H3B120.0N2—C8—S1119.9 (3)
C9—N4—N5117.1 (3)N4—C9—C10120.4 (4)
C16—N5—N4120.0 (3)N4—C9—H9119.8
C16—N5—H5120.0C10—C9—H9119.8
N4—N5—H5120.0C11—C10—C15118.8 (4)
C16—N6—H6A120.0C11—C10—C9119.6 (4)
C16—N6—H6B120.0C15—C10—C9121.6 (3)
H6A—N6—H6B120.0C12—C11—C10120.1 (4)
N1—C1—C2120.0 (4)C12—C11—H11119.9
N1—C1—H1120.0C10—C11—H11119.9
C2—C1—H1120.0C13—C12—C11120.1 (4)
C3—C2—C7118.8 (4)C13—C12—H12119.9
C3—C2—C1121.9 (4)C11—C12—H12119.9
C7—C2—C1119.3 (4)C14—C13—C12120.5 (4)
C2—C3—C4121.0 (4)C14—C13—H13119.8
C2—C3—H3119.5C12—C13—H13119.8
C4—C3—H3119.5C13—C14—C15120.4 (5)
C3—C4—C5119.8 (5)C13—C14—H14119.8
C3—C4—H4120.1C15—C14—H14119.8
C5—C4—H4120.1C14—C15—C10120.1 (4)
C6—C5—C4119.7 (4)C14—C15—H15119.9
C6—C5—H5A120.2C10—C15—H15119.9
C4—C5—H5A120.2N6—C16—N5116.4 (3)
C5—C6—C7120.4 (4)N6—C16—S2123.6 (3)
C5—C6—H6119.8N5—C16—S2120.0 (3)
C1—N1—N2—C8177.7 (3)N1—N2—C8—S1173.6 (2)
C9—N4—N5—C16176.7 (3)N5—N4—C9—C10175.1 (3)
N2—N1—C1—C2175.6 (3)N4—C9—C10—C11174.2 (4)
N1—C1—C2—C34.5 (6)N4—C9—C10—C158.9 (6)
N1—C1—C2—C7174.5 (4)C15—C10—C11—C120.6 (6)
C7—C2—C3—C40.2 (6)C9—C10—C11—C12176.4 (4)
C1—C2—C3—C4179.3 (4)C10—C11—C12—C130.8 (7)
C2—C3—C4—C50.0 (6)C11—C12—C13—C141.9 (7)
C3—C4—C5—C60.0 (6)C12—C13—C14—C151.7 (7)
C4—C5—C6—C70.2 (7)C13—C14—C15—C100.2 (7)
C5—C6—C7—C20.4 (6)C11—C10—C15—C140.9 (6)
C3—C2—C7—C60.4 (6)C9—C10—C15—C14176.0 (4)
C1—C2—C7—C6179.5 (3)N4—N5—C16—N67.6 (5)
N1—N2—C8—N34.7 (5)N4—N5—C16—S2172.6 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.643.443 (3)155
N3—H3A···S1ii0.862.983.488 (3)120
N5—H5···S1ii0.862.613.441 (3)162
N6—H6B···S2iii0.862.513.368 (3)173
Symmetry codes: (i) −x+3, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.643.443 (3)155
N3—H3A···S1ii0.862.983.488 (3)120
N5—H5···S1ii0.862.613.441 (3)162
N6—H6B···S2iii0.862.513.368 (3)173
Symmetry codes: (i) −x+3, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1.
Acknowledgements top

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

references
References top

Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.

Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.

Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.