metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[benzyl N′-(1H-indol-3-ylmethyl­ene)hydrazinecarbodi­thio­ato-κ2N′,S]nickel(II) N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 November 2008; accepted 19 November 2008; online 26 November 2008)

In the title compound, [Ni(C17H14N3S2)2]·2C3H7NO, the Ni atom (site symmetry [\overline{1}]) is N,S-chelated by two deprotonated Schiff base anions in a distorted square-planar geometry. The dihedral angle between the aromatic ring planes within the ligand is 86.37 (13)°. In the crystal structure, an N—H⋯O hydrogen bond links the complex to the dimethyl­formamide solvent mol­ecule.

Related literature

For other square-planar nickel dithio­carbaza­tes, see: Ali et al. (2000[Ali, M. A., Mirza, A., Butcher, R. J. & Rahman, M. (2000). Transition Met. Chem. 25, 430-436.]); Tian et al. (1996a[Tian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z., Fun, H.-K. & Kandasamy, S. (1996a). Polyhedron, 15, 2263-2271.],b[Tian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z. & Huang, X.-Y. (1996b). J. Coord. Chem. 38, 219-226.]); Xue et al. (2003[Xue, Z.-M., Zhang, X.-J., Tian, Y.-P., Wu, J.-Y., Jiang, M.-H. & Fun, H.-K. (2003). Chin. J. Struct. Chem. 22, 265-269.]); Zhang et al. (2004[Zhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M.-H., Chantrapromma, S. & Fun, H.-K. (2004). Transition Met. Chem. 29, 596-602.]); Zhu et al. (2000[Zhu, X.-H., Chen, X.-F., Zhang, Y., You, X.-Z., Tan, W.-L., Ji, W., Vittal, J. J., Tan, G.-K. & Kennard, C. H. L. (2000). New J. Chem. 24, 419-423.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H14N3S2)2]·2C3H7NO

  • Mr = 853.77

  • Monoclinic, P 21 /c

  • a = 10.3808 (3) Å

  • b = 20.0219 (7) Å

  • c = 10.7831 (3) Å

  • β = 117.921 (2)°

  • V = 1980.3 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 (2) K

  • 0.12 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.957

  • 13342 measured reflections

  • 3481 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.03

  • 3481 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 1.916 (2)
Ni1—S1 2.1770 (7)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: pubCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

For related structures, see: Ali et al. (2000); Tian et al. (1996a,b); Xue et al. (2003); Zhang et al. (2004); Zhu et al. (2000).

Related literature top

For other square-planar nickel dithiocarbazates, see: Ali et al. (2000); Tian et al. (1996a,b); Xue et al. (2003); Zhang et al. (2004); Zhu et al. (2000).

Experimental top

Benzyl (1H-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate (2 mmol, 0.65 g) was dissolved in ethanol (30 ml) along with several drops of triethylamine. To the resulting clear solution was added an ethanol solution (10 ml) containing 1 mmol (0.25 g) of nickel acetate tetrahydrate. The mixture was heated for an hour. The product that separated was recrystallized from DMF to yield brown blocks of (I).

Refinement top

Hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99Å, N–H = 0.88Å) and refined as riding with U(H) = 1.2–1.5 times Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z) and the hydrogen bonds are shown as dashed lines.
Bis[benzyl N'-(1H-indol-3-ylmethylene)hydrazinecarbodithioato- κ2N',S]nickel(II) N,N-dimethylformamide disolvate top
Crystal data top
[Ni(C17H14N3S2)2]·2C3H7NOF(000) = 892
Mr = 853.77Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1450 reflections
a = 10.3808 (3) Åθ = 2.2–22.7°
b = 20.0219 (7) ŵ = 0.75 mm1
c = 10.7831 (3) ÅT = 100 K
β = 117.921 (2)°Block, brown
V = 1980.3 (1) Å30.12 × 0.12 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3481 independent reflections
Radiation source: fine-focus sealed tube2615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.916, Tmax = 0.957k = 2323
13342 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2888P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(C17H14N3S2)2]·2C3H7NOV = 1980.3 (1) Å3
Mr = 853.77Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.3808 (3) ŵ = 0.75 mm1
b = 20.0219 (7) ÅT = 100 K
c = 10.7831 (3) Å0.12 × 0.12 × 0.06 mm
β = 117.921 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3481 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2615 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.957Rint = 0.062
13342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
3481 reflectionsΔρmin = 0.29 e Å3
252 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01710 (15)
S10.48640 (8)0.60841 (4)0.48343 (8)0.0236 (2)
S20.38426 (8)0.70431 (4)0.62163 (8)0.0234 (2)
O10.1755 (3)0.56685 (12)1.1091 (2)0.0472 (7)
N10.2818 (3)0.49406 (11)0.9618 (2)0.0220 (6)
H10.25200.51911.01050.026*
N20.4331 (2)0.51020 (11)0.6371 (2)0.0182 (5)
N30.3953 (2)0.57357 (11)0.6685 (2)0.0192 (5)
N40.0849 (3)0.57529 (12)1.2634 (2)0.0252 (6)
C10.2942 (3)0.42563 (14)0.9707 (3)0.0192 (6)
C20.2658 (3)0.38131 (15)1.0548 (3)0.0232 (7)
H20.23510.39671.12000.028*
C30.2842 (3)0.31463 (15)1.0393 (3)0.0260 (7)
H30.26470.28321.09450.031*
C40.3308 (3)0.29162 (15)0.9445 (3)0.0250 (7)
H40.34120.24500.93540.030*
C50.3621 (3)0.33626 (15)0.8636 (3)0.0219 (7)
H50.39550.32050.80050.026*
C60.3437 (3)0.40438 (14)0.8763 (3)0.0187 (6)
C70.3625 (3)0.46401 (14)0.8099 (3)0.0188 (6)
C80.3220 (3)0.51697 (15)0.8678 (3)0.0223 (7)
H80.32270.56270.84430.027*
C90.4138 (3)0.46239 (15)0.7091 (3)0.0198 (7)
H90.43820.41910.69070.024*
C100.4193 (3)0.62076 (14)0.6009 (3)0.0191 (6)
C110.3353 (3)0.70343 (15)0.7620 (3)0.0245 (7)
H11A0.40280.67260.83540.029*
H11B0.35350.74870.80390.029*
C120.1817 (3)0.68378 (14)0.7277 (3)0.0206 (7)
C130.0673 (3)0.68232 (15)0.5927 (3)0.0259 (7)
H130.08380.69390.51590.031*
C140.0716 (3)0.66398 (16)0.5687 (3)0.0309 (8)
H140.14900.66220.47540.037*
C150.0977 (3)0.64846 (16)0.6793 (3)0.0320 (8)
H150.19300.63640.66270.038*
C160.0152 (3)0.65049 (15)0.8139 (3)0.0291 (8)
H160.00200.63980.89080.035*
C170.1540 (3)0.66816 (15)0.8379 (3)0.0243 (7)
H170.23120.66960.93130.029*
C180.1381 (4)0.54196 (18)1.1919 (3)0.0376 (9)
H180.14850.49501.20540.045*
C190.0701 (3)0.64730 (15)1.2501 (3)0.0289 (8)
H19A0.07550.66161.16580.043*
H19B0.14890.66841.33290.043*
H19C0.02410.66061.24270.043*
C200.0490 (3)0.54232 (15)1.3634 (3)0.0293 (7)
H20A0.05900.49391.35790.044*
H20B0.05160.55311.34120.044*
H20C0.11540.55781.45840.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0178 (3)0.0178 (3)0.0192 (3)0.0001 (2)0.0116 (2)0.0001 (2)
S10.0326 (5)0.0197 (4)0.0292 (4)0.0005 (3)0.0234 (4)0.0002 (3)
S20.0297 (5)0.0183 (4)0.0296 (4)0.0010 (3)0.0201 (4)0.0016 (3)
O10.0752 (19)0.0443 (17)0.0405 (14)0.0204 (13)0.0424 (14)0.0058 (12)
N10.0274 (14)0.0212 (15)0.0242 (13)0.0007 (11)0.0178 (11)0.0028 (11)
N20.0186 (13)0.0152 (14)0.0220 (12)0.0001 (10)0.0106 (10)0.0005 (10)
N30.0197 (13)0.0175 (14)0.0223 (13)0.0009 (10)0.0114 (11)0.0031 (10)
N40.0265 (15)0.0263 (16)0.0239 (13)0.0015 (11)0.0129 (12)0.0056 (11)
C10.0192 (16)0.0213 (17)0.0180 (14)0.0012 (13)0.0094 (12)0.0003 (12)
C20.0225 (17)0.0289 (19)0.0212 (15)0.0016 (14)0.0128 (13)0.0023 (13)
C30.0232 (17)0.030 (2)0.0264 (16)0.0009 (14)0.0128 (14)0.0100 (14)
C40.0229 (17)0.0197 (17)0.0319 (17)0.0021 (13)0.0123 (14)0.0079 (13)
C50.0188 (16)0.0253 (18)0.0229 (15)0.0023 (13)0.0110 (13)0.0003 (13)
C60.0129 (15)0.0237 (18)0.0205 (15)0.0019 (12)0.0088 (12)0.0023 (12)
C70.0172 (16)0.0200 (17)0.0203 (15)0.0010 (12)0.0098 (13)0.0001 (12)
C80.0243 (17)0.0242 (18)0.0217 (15)0.0019 (13)0.0134 (13)0.0033 (12)
C90.0172 (16)0.0201 (18)0.0237 (16)0.0008 (12)0.0107 (13)0.0002 (12)
C100.0162 (16)0.0222 (17)0.0183 (14)0.0012 (12)0.0076 (12)0.0008 (12)
C110.0304 (18)0.0232 (18)0.0263 (16)0.0054 (14)0.0186 (14)0.0074 (13)
C120.0251 (17)0.0148 (16)0.0282 (16)0.0002 (13)0.0177 (14)0.0055 (12)
C130.0301 (19)0.0247 (18)0.0265 (17)0.0025 (14)0.0164 (15)0.0007 (13)
C140.0224 (18)0.032 (2)0.0314 (18)0.0053 (14)0.0071 (15)0.0008 (15)
C150.0232 (18)0.031 (2)0.044 (2)0.0045 (14)0.0177 (16)0.0048 (15)
C160.0322 (19)0.0273 (19)0.0366 (19)0.0018 (14)0.0234 (16)0.0042 (14)
C170.0246 (18)0.0256 (18)0.0264 (16)0.0007 (14)0.0150 (14)0.0043 (13)
C180.048 (2)0.034 (2)0.0333 (19)0.0081 (17)0.0206 (18)0.0021 (16)
C190.034 (2)0.028 (2)0.0260 (17)0.0037 (15)0.0150 (15)0.0037 (14)
C200.0300 (18)0.029 (2)0.0324 (18)0.0026 (14)0.0177 (15)0.0049 (14)
Geometric parameters (Å, º) top
Ni1—N2i1.916 (2)C6—C71.451 (4)
Ni1—N21.916 (2)C7—C81.391 (4)
Ni1—S12.1770 (7)C7—C91.418 (4)
Ni1—S1i2.1770 (7)C8—H80.9500
S1—C101.725 (3)C9—H90.9500
S2—C101.748 (3)C11—C121.511 (4)
S2—C111.808 (3)C11—H11A0.9900
O1—C181.233 (4)C11—H11B0.9900
N1—C81.346 (3)C12—C171.383 (4)
N1—C11.375 (3)C12—C131.382 (4)
N1—H10.8800C13—C141.390 (4)
N2—C91.306 (3)C13—H130.9500
N2—N31.416 (3)C14—C151.377 (4)
N3—C101.287 (3)C14—H140.9500
N4—C181.321 (4)C15—C161.375 (4)
N4—C201.454 (4)C15—H150.9500
N4—C191.450 (4)C16—C171.385 (4)
C1—C21.395 (4)C16—H160.9500
C1—C61.404 (4)C17—H170.9500
C2—C31.370 (4)C18—H180.9500
C2—H20.9500C19—H19A0.9800
C3—C41.398 (4)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.390 (4)C20—H20A0.9800
C4—H40.9500C20—H20B0.9800
C5—C61.393 (4)C20—H20C0.9800
C5—H50.9500
N2i—Ni1—N2180.0C7—C9—H9114.5
N2i—Ni1—S194.36 (7)N3—C10—S1124.2 (2)
N2—Ni1—S185.64 (7)N3—C10—S2121.5 (2)
N2i—Ni1—S1i85.64 (7)S1—C10—S2114.26 (16)
N2—Ni1—S1i94.36 (7)C12—C11—S2118.4 (2)
S1—Ni1—S1i180.0C12—C11—H11A107.7
C10—S1—Ni196.64 (10)S2—C11—H11A107.7
C10—S2—C11104.76 (13)C12—C11—H11B107.7
C8—N1—C1109.9 (2)S2—C11—H11B107.7
C8—N1—H1125.1H11A—C11—H11B107.1
C1—N1—H1125.1C17—C12—C13118.5 (3)
C9—N2—N3112.2 (2)C17—C12—C11118.0 (2)
C9—N2—Ni1126.4 (2)C13—C12—C11123.5 (3)
N3—N2—Ni1121.46 (17)C12—C13—C14120.4 (3)
C10—N3—N2111.9 (2)C12—C13—H13119.8
C18—N4—C20121.8 (3)C14—C13—H13119.8
C18—N4—C19119.9 (3)C15—C14—C13120.4 (3)
C20—N4—C19118.2 (2)C15—C14—H14119.8
N1—C1—C2129.6 (3)C13—C14—H14119.8
N1—C1—C6107.8 (2)C14—C15—C16119.4 (3)
C2—C1—C6122.6 (3)C14—C15—H15120.3
C3—C2—C1117.2 (3)C16—C15—H15120.3
C3—C2—H2121.4C15—C16—C17120.2 (3)
C1—C2—H2121.4C15—C16—H16119.9
C2—C3—C4121.7 (3)C17—C16—H16119.9
C2—C3—H3119.2C12—C17—C16121.0 (3)
C4—C3—H3119.2C12—C17—H17119.5
C5—C4—C3120.7 (3)C16—C17—H17119.5
C5—C4—H4119.7O1—C18—N4125.3 (3)
C3—C4—H4119.7O1—C18—H18117.3
C4—C5—C6119.0 (3)N4—C18—H18117.3
C4—C5—H5120.5N4—C19—H19A109.5
C6—C5—H5120.5N4—C19—H19B109.5
C5—C6—C1118.8 (3)H19A—C19—H19B109.5
C5—C6—C7134.5 (3)N4—C19—H19C109.5
C1—C6—C7106.7 (2)H19A—C19—H19C109.5
C8—C7—C9131.5 (3)H19B—C19—H19C109.5
C8—C7—C6105.5 (2)N4—C20—H20A109.5
C9—C7—C6123.0 (3)N4—C20—H20B109.5
N1—C8—C7110.1 (3)H20A—C20—H20B109.5
N1—C8—H8125.0N4—C20—H20C109.5
C7—C8—H8125.0H20A—C20—H20C109.5
N2—C9—C7131.1 (3)H20B—C20—H20C109.5
N2—C9—H9114.5
N2i—Ni1—S1—C10177.84 (11)C9—C7—C8—N1179.2 (3)
N2—Ni1—S1—C102.16 (11)C6—C7—C8—N10.2 (3)
S1—Ni1—N2—C9177.9 (2)N3—N2—C9—C70.1 (4)
S1i—Ni1—N2—C92.1 (2)Ni1—N2—C9—C7178.5 (2)
S1—Ni1—N2—N33.52 (18)C8—C7—C9—N22.8 (5)
S1i—Ni1—N2—N3176.48 (18)C6—C7—C9—N2177.9 (3)
C9—N2—N3—C10177.8 (2)N2—N3—C10—S11.1 (3)
Ni1—N2—N3—C103.5 (3)N2—N3—C10—S2179.25 (17)
C8—N1—C1—C2179.3 (3)Ni1—S1—C10—N31.2 (2)
C8—N1—C1—C60.5 (3)Ni1—S1—C10—S2178.47 (13)
N1—C1—C2—C3178.4 (3)C11—S2—C10—N36.4 (3)
C6—C1—C2—C31.9 (4)C11—S2—C10—S1173.95 (15)
C1—C2—C3—C40.7 (4)C10—S2—C11—C1280.3 (2)
C2—C3—C4—C50.8 (4)S2—C11—C12—C17165.3 (2)
C3—C4—C5—C61.2 (4)S2—C11—C12—C1316.5 (4)
C4—C5—C6—C10.0 (4)C17—C12—C13—C141.5 (4)
C4—C5—C6—C7178.9 (3)C11—C12—C13—C14179.7 (3)
N1—C1—C6—C5178.6 (2)C12—C13—C14—C151.4 (5)
C2—C1—C6—C51.5 (4)C13—C14—C15—C160.7 (5)
N1—C1—C6—C70.6 (3)C14—C15—C16—C170.1 (5)
C2—C1—C6—C7179.3 (3)C13—C12—C17—C160.9 (4)
C5—C6—C7—C8178.6 (3)C11—C12—C17—C16179.2 (3)
C1—C6—C7—C80.5 (3)C15—C16—C17—C120.2 (5)
C5—C6—C7—C92.0 (5)C20—N4—C18—O1177.4 (3)
C1—C6—C7—C9179.0 (2)C19—N4—C18—O11.6 (5)
C1—N1—C8—C70.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.862.739 (3)175

Experimental details

Crystal data
Chemical formula[Ni(C17H14N3S2)2]·2C3H7NO
Mr853.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3808 (3), 20.0219 (7), 10.7831 (3)
β (°) 117.921 (2)
V3)1980.3 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.12 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13342, 3481, 2615
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.03
No. of reflections3481
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2008).

Selected bond lengths (Å) top
Ni1—N21.916 (2)Ni1—S12.1770 (7)
 

Acknowledgements

We thank the University of Malaya for funding this study (Science Fund grants 12–02-03–2031, 12–02-03–2051).

References

First citationAli, M. A., Mirza, A., Butcher, R. J. & Rahman, M. (2000). Transition Met. Chem. 25, 430–436.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z., Fun, H.-K. & Kandasamy, S. (1996a). Polyhedron, 15, 2263–2271.  CSD CrossRef CAS Web of Science Google Scholar
First citationTian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z. & Huang, X.-Y. (1996b). J. Coord. Chem. 38, 219–226.  CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationXue, Z.-M., Zhang, X.-J., Tian, Y.-P., Wu, J.-Y., Jiang, M.-H. & Fun, H.-K. (2003). Chin. J. Struct. Chem. 22, 265–269.  CAS Google Scholar
First citationZhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M.-H., Chantrapromma, S. & Fun, H.-K. (2004). Transition Met. Chem. 29, 596–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, X.-H., Chen, X.-F., Zhang, Y., You, X.-Z., Tan, W.-L., Ji, W., Vittal, J. J., Tan, G.-K. & Kennard, C. H. L. (2000). New J. Chem. 24, 419–423.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds