organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-carbamoyl-3-meth­oxy­imino-4-methyl­piperidine-1-carboxyl­ate

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing 100050, People's Republic of China
*Correspondence e-mail: wyc9999@126.com

(Received 22 October 2008; accepted 4 November 2008; online 8 November 2008)

The title compound, C13H23N3O4, was prepared starting from ethyl N-benzyl-3-oxopiperidine-4-carboxyl­ate through a nine-step reaction, including hydrogenation, Boc (tert-butoxy­carbon­yl) protection, methyl­ation, oximation, hydrolysis, esterification and ammonolysis. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds to form a porous three-dimensional network with solvent-free hydro­phobic channels extending along the c axis.

Related literature

For the synthesis and properties of quinolone derivatives, see: Ray et al. (2005[Ray, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161-180.]); Ball et al. (1998[Ball, P., Tilloston, G. & Fernald, A. (1998). Expert Opin. Investig. Drugs, 7, 761-783.]); Bryskier (1997[Bryskier, A. (1997). Expert Opin. Investig. Drugs, 6, 1227-1245.]); De Sarro & De Sarro (2001[De Sarro, A. & De Sarro, G. (2001). Curr. Med. Chem. 8, 371-384.]); Anderson & Osheroff (2001[Anderson, V. E. & Osheroff, N. (2001). Curr. Pharm. Des. 7, 337-353.]); Dang et al. (2007[Dang, Z., Yang, Y. & Ji, R. (2007). Bioorg. Med. Chem. Lett. 17, 4523-4526.]); Wang et al. (2008[Wang, X. Y., Guo, Q. & Wang, Y. C. (2008). Acta Pharmacol. Sin. 43, 819-827.]).

[Scheme 1]

Experimental

Crystal data
  • C13H23N3O4

  • Mr = 285.34

  • Tetragonal, I 41 /a

  • a = 22.813 (2) Å

  • c = 12.0742 (16) Å

  • V = 6283.8 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.48 × 0.46 × 0.45 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.963

  • 16003 measured reflections

  • 2763 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.01

  • 2763 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 2.11 2.9607 (18) 173
N3—H3B⋯O3ii 0.86 2.34 3.1334 (19) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinolones, a class of synthetic antibacterial compounds based on a 4-quinolone skeleton, have been the landmark discovery in the treatment of bacterial infections in both community and hospital setting (Ray et al., 2005; Ball et al., 1998; Bryskier, 1997). The most intensive structural variations have been carried out on the basic group at the C-7 position, partially due to the ease of their introduction through a nucleophilic aromatic substitution reaction on the corresponding halide. Piperazine, aminopyrolidine and their derivatives have been the most successfully employed side chains, as evidenced by the compounds currently on the market (De Sarro & De Sarro, 2001; Anderson & Osheroff, 2001; Dang et al., 2007). Recently, as part of an ongoing study aimed to find potent and broad-spectrum antibacterial agents displaying strong Gram-positive activity, we have focused our attention on the synthesis of C-7 substituted quinolones (Wang et al., 2008). We report here the crystal structure of the title compound, which is a key intermediate of 3-methoxyimino-4-amino-4-methylpiperidine.

In the molecule of the title compound (Fig. 1), the N1—C6 (1.352 (2) Å) and N3—C12 (1.323 (2) Å) bond lengths are significantly shorter than the normal C—N single bond (1.47 Å), indicating some conjugation with the C6O2 and C12O4 carbonyl groups, respectively. The six-membered piperidine ring adopts a boat conformation, with N1 and C3 displaced by 0.533 (2) and 0.632 (2) Å, respectively, from the mean-plane through C1, C2, C4 and C5. In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the c axis (Fig. 2).

Related literature top

For the synthesis and properties of quinolone derivatives, see: Ray et al. (2005); Ball et al. (1998); Bryskier (1997); De Sarro & De Sarro (2001); Anderson & Osheroff (2001); Dang et al. (2007); Wang et al. (2008).

Experimental top

To a solution of ethyl N-Boc-3-methoxyimino-4-methylpiperidine-4-carboxylate (12.71 g, 40.5 mmol) in ethanol (50 ml) was added dropwise a solution of sodium hydroxide (2.75 g, 68.85 mmol) in water (5 ml) at room temperature. After stirring for 4.5 h, ethanol was removed under reduced pressure. After addition of water (20 ml), acetic acid (5 ml, 86.5 mmol) and triethylamine (17 ml, 122 mmol), the mixture was stirred for 10 min and extracted with CH2Cl2 (3 × 40 ml). The combined organic extracts were washed with saturated brine (3 × 20 ml) and dried over anhydrous sodium sulfate. The reaction mixture was then cooled to 259-261 K, and isobutyl chloroformate (13.1 ml, 101.8 mmol) was added. After 0.5 h, the reaction mixture was washed with 1 N HCl (4 × 20 ml) and saturated brine (4 × 40 ml), and dried over anhydrous sodium sulfate. The resulting yellow residue was purified by column chromatography, with petroleum ether/diethyl ether (3:1 v/v) as eluent to afford the title compound (4.92 g, 42.6%; mp: 140–142 °C). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/ethyl acetoacetate solution (1:1 v/v). 1H NMR (CDCl3, δ): 1.37-1.46 (12H, m, CH3), 1.50-1.57 (1H, m, C5), 2.43-2.49 (1H, m, C5), 3.38-3.53 (2H, m, C6), 3.89 (3H, s, OCH3), 4.17-4.45 (2H, m, C2), 5.57 (1H, br, CONH), 6.00 (1H, br, CONH). MS (ESI, m/z): 286 (M+1)+.

Refinement top

All H atoms were placed at calculated positions, with C—H = 0.95–0.98 Å, N—H = 0.86 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. The crystal structure contains voids of about 105 Å3 connected to form channels along the c axis, which may accommodate solvent molecules. However, significant residual densities in the void could not be observed in the difference Fourier map.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis.
tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate top
Crystal data top
C13H23N3O4Dx = 1.206 Mg m3
Mr = 285.34Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3595 reflections
Hall symbol: -I 4adθ = 2.5–22.6°
a = 22.813 (2) ŵ = 0.09 mm1
c = 12.0742 (16) ÅT = 293 K
V = 6283.8 (11) Å3Block, colorless
Z = 160.48 × 0.46 × 0.45 mm
F(000) = 2464
Data collection top
Bruker SMART APEX CCD
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube1794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.957, Tmax = 0.963k = 2718
16003 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
2763 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C13H23N3O4Z = 16
Mr = 285.34Mo Kα radiation
Tetragonal, I41/aµ = 0.09 mm1
a = 22.813 (2) ÅT = 293 K
c = 12.0742 (16) Å0.48 × 0.46 × 0.45 mm
V = 6283.8 (11) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2763 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1794 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.963Rint = 0.049
16003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2763 reflectionsΔρmin = 0.12 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38925 (6)0.53733 (7)0.27764 (13)0.0504 (4)
N20.29390 (6)0.58484 (6)0.05570 (12)0.0430 (4)
N30.41951 (6)0.51996 (6)0.00791 (13)0.0484 (4)
H3A0.44320.49410.03420.058*
H3B0.38300.51890.02530.058*
O10.46173 (5)0.48101 (5)0.33671 (11)0.0554 (4)
O20.37946 (6)0.43856 (6)0.26866 (13)0.0694 (4)
O30.24359 (5)0.55589 (5)0.09853 (10)0.0501 (4)
O40.49117 (5)0.56448 (5)0.08658 (12)0.0570 (4)
C10.33172 (8)0.54686 (10)0.23109 (17)0.0558 (5)
H1A0.30800.56920.28280.067*
H1B0.31260.50940.21890.067*
C20.33613 (7)0.57937 (7)0.12372 (14)0.0400 (4)
C30.39477 (7)0.60751 (7)0.09840 (14)0.0405 (4)
C40.41585 (8)0.63467 (8)0.20750 (15)0.0502 (5)
H4A0.45310.65410.19490.060*
H4B0.38790.66420.23090.060*
C50.42325 (9)0.58985 (8)0.30031 (16)0.0558 (5)
H5A0.46430.57960.30740.067*
H5B0.41050.60690.36980.067*
C60.40799 (8)0.48163 (10)0.29224 (16)0.0503 (5)
C70.49544 (8)0.42673 (9)0.34839 (16)0.0544 (5)
C80.50169 (11)0.39737 (11)0.2370 (2)0.0890 (8)
H8A0.46430.38240.21380.134*
H8B0.52920.36570.24260.134*
H8C0.51550.42540.18370.134*
C90.55329 (9)0.44949 (10)0.3911 (2)0.0709 (6)
H9A0.57030.47540.33720.106*
H9B0.57940.41720.40410.106*
H9C0.54710.47040.45900.106*
C100.46678 (10)0.38805 (11)0.4341 (2)0.0861 (8)
H10A0.46190.40960.50170.129*
H10B0.49100.35440.44750.129*
H10C0.42910.37550.40760.129*
C110.19775 (8)0.55590 (9)0.01807 (17)0.0588 (6)
H11A0.18180.59470.01150.088*
H11B0.16740.52930.04080.088*
H11C0.21320.54370.05220.088*
C120.43929 (8)0.56124 (7)0.05932 (14)0.0401 (4)
C130.39064 (9)0.65416 (8)0.00759 (16)0.0529 (5)
H13A0.37610.63660.05930.079*
H13B0.42880.67050.00570.079*
H13C0.36440.68470.03080.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0401 (9)0.0565 (10)0.0546 (10)0.0059 (8)0.0052 (7)0.0066 (8)
N20.0373 (9)0.0459 (9)0.0457 (9)0.0019 (7)0.0041 (7)0.0026 (7)
N30.0342 (8)0.0456 (9)0.0655 (11)0.0027 (7)0.0014 (7)0.0195 (8)
O10.0444 (8)0.0558 (8)0.0661 (9)0.0102 (6)0.0121 (6)0.0019 (7)
O20.0574 (9)0.0617 (10)0.0890 (11)0.0071 (7)0.0152 (8)0.0097 (8)
O30.0346 (7)0.0627 (8)0.0529 (8)0.0010 (6)0.0000 (6)0.0073 (6)
O40.0338 (7)0.0607 (9)0.0766 (10)0.0034 (6)0.0029 (6)0.0254 (7)
C10.0360 (11)0.0753 (14)0.0560 (13)0.0088 (9)0.0019 (9)0.0136 (10)
C20.0345 (10)0.0412 (10)0.0442 (10)0.0093 (8)0.0030 (8)0.0041 (8)
C30.0398 (10)0.0369 (10)0.0447 (10)0.0042 (8)0.0025 (8)0.0042 (8)
C40.0525 (12)0.0423 (11)0.0559 (12)0.0054 (9)0.0005 (9)0.0119 (9)
C50.0593 (13)0.0571 (13)0.0509 (12)0.0100 (10)0.0094 (10)0.0106 (10)
C60.0433 (12)0.0622 (14)0.0453 (12)0.0027 (10)0.0009 (9)0.0055 (10)
C70.0512 (12)0.0570 (13)0.0549 (13)0.0139 (9)0.0011 (10)0.0058 (10)
C80.0959 (19)0.0966 (19)0.0744 (17)0.0334 (15)0.0017 (14)0.0162 (14)
C90.0470 (13)0.0821 (16)0.0837 (17)0.0128 (11)0.0020 (11)0.0093 (13)
C100.0726 (16)0.0894 (18)0.0962 (19)0.0002 (13)0.0024 (14)0.0364 (15)
C110.0409 (11)0.0714 (14)0.0641 (13)0.0025 (9)0.0097 (10)0.0085 (11)
C120.0345 (10)0.0393 (10)0.0467 (11)0.0006 (8)0.0024 (8)0.0035 (8)
C130.0551 (12)0.0464 (11)0.0571 (12)0.0021 (9)0.0057 (9)0.0021 (9)
Geometric parameters (Å, º) top
N1—C61.352 (2)C4—H4B0.9700
N1—C11.444 (2)C5—H5A0.9700
N1—C51.453 (2)C5—H5B0.9700
N2—C21.272 (2)C7—C101.509 (3)
N2—O31.4217 (17)C7—C91.509 (3)
N3—C121.323 (2)C7—C81.509 (3)
N3—H3A0.8600C8—H8A0.9600
N3—H3B0.8600C8—H8B0.9600
O1—C61.339 (2)C8—H8C0.9600
O1—C71.465 (2)C9—H9A0.9600
O2—C61.213 (2)C9—H9B0.9600
O3—C111.427 (2)C9—H9C0.9600
O4—C121.2308 (19)C10—H10A0.9600
C1—C21.497 (2)C10—H10B0.9600
C1—H1A0.9700C10—H10C0.9600
C1—H1B0.9700C11—H11A0.9600
C2—C31.515 (2)C11—H11B0.9600
C3—C131.531 (2)C11—H11C0.9600
C3—C41.533 (2)C13—H13A0.9600
C3—C121.539 (2)C13—H13B0.9600
C4—C51.526 (3)C13—H13C0.9600
C4—H4A0.9700
C6—N1—C1118.66 (17)O1—C7—C10109.46 (16)
C6—N1—C5125.56 (16)O1—C7—C9101.60 (15)
C1—N1—C5115.73 (16)C10—C7—C9110.25 (18)
C2—N2—O3109.33 (14)O1—C7—C8109.82 (17)
C12—N3—H3A120.0C10—C7—C8113.1 (2)
C12—N3—H3B120.0C9—C7—C8111.98 (17)
H3A—N3—H3B120.0C7—C8—H8A109.5
C6—O1—C7121.90 (15)C7—C8—H8B109.5
N2—O3—C11110.11 (13)H8A—C8—H8B109.5
N1—C1—C2110.52 (15)C7—C8—H8C109.5
N1—C1—H1A109.5H8A—C8—H8C109.5
C2—C1—H1A109.5H8B—C8—H8C109.5
N1—C1—H1B109.5C7—C9—H9A109.5
C2—C1—H1B109.5C7—C9—H9B109.5
H1A—C1—H1B108.1H9A—C9—H9B109.5
N2—C2—C1123.83 (16)C7—C9—H9C109.5
N2—C2—C3119.79 (16)H9A—C9—H9C109.5
C1—C2—C3116.37 (15)H9B—C9—H9C109.5
C2—C3—C13112.63 (14)C7—C10—H10A109.5
C2—C3—C4105.95 (14)C7—C10—H10B109.5
C13—C3—C4110.71 (14)H10A—C10—H10B109.5
C2—C3—C12110.73 (13)C7—C10—H10C109.5
C13—C3—C12107.33 (14)H10A—C10—H10C109.5
C4—C3—C12109.49 (14)H10B—C10—H10C109.5
C5—C4—C3113.25 (14)O3—C11—H11A109.5
C5—C4—H4A108.9O3—C11—H11B109.5
C3—C4—H4A108.9H11A—C11—H11B109.5
C5—C4—H4B108.9O3—C11—H11C109.5
C3—C4—H4B108.9H11A—C11—H11C109.5
H4A—C4—H4B107.7H11B—C11—H11C109.5
N1—C5—C4110.80 (15)O4—C12—N3122.35 (15)
N1—C5—H5A109.5O4—C12—C3120.75 (15)
C4—C5—H5A109.5N3—C12—C3116.84 (15)
N1—C5—H5B109.5C3—C13—H13A109.5
C4—C5—H5B109.5C3—C13—H13B109.5
H5A—C5—H5B108.1H13A—C13—H13B109.5
O2—C6—O1125.26 (19)C3—C13—H13C109.5
O2—C6—N1124.14 (18)H13A—C13—H13C109.5
O1—C6—N1110.60 (17)H13B—C13—H13C109.5
C2—N2—O3—C11173.54 (15)C1—N1—C5—C440.4 (2)
C6—N1—C1—C2118.26 (19)C3—C4—C5—N120.9 (2)
C5—N1—C1—C259.1 (2)C7—O1—C6—O28.3 (3)
O3—N2—C2—C10.3 (2)C7—O1—C6—N1172.16 (15)
O3—N2—C2—C3178.79 (13)C1—N1—C6—O20.0 (3)
N1—C1—C2—N2167.35 (16)C5—N1—C6—O2177.08 (19)
N1—C1—C2—C313.5 (2)C1—N1—C6—O1179.54 (15)
N2—C2—C3—C1316.4 (2)C5—N1—C6—O13.4 (3)
C1—C2—C3—C13162.72 (16)C6—O1—C7—C1068.6 (2)
N2—C2—C3—C4137.60 (16)C6—O1—C7—C9174.80 (16)
C1—C2—C3—C441.54 (19)C6—O1—C7—C856.1 (2)
N2—C2—C3—C12103.77 (18)C2—C3—C12—O4142.74 (17)
C1—C2—C3—C1277.10 (19)C13—C3—C12—O493.96 (19)
C2—C3—C4—C559.91 (19)C4—C3—C12—O426.3 (2)
C13—C3—C4—C5177.69 (15)C2—C3—C12—N340.0 (2)
C12—C3—C4—C559.54 (19)C13—C3—C12—N383.25 (19)
C6—N1—C5—C4136.72 (18)C4—C3—C12—N3156.51 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.112.9607 (18)173
N3—H3B···O3ii0.862.343.1334 (19)153
Symmetry codes: (i) x+1, y+1, z; (ii) y1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC13H23N3O4
Mr285.34
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)22.813 (2), 12.0742 (16)
V3)6283.8 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.46 × 0.45
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
16003, 2763, 1794
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.01
No. of reflections2763
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.12

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.112.9607 (18)173.2
N3—H3B···O3ii0.862.343.1334 (19)152.8
Symmetry codes: (i) x+1, y+1, z; (ii) y1/4, x+3/4, z1/4.
 

Acknowledgements

We are grateful to the National Research Center of Drug and Metabolite Analysis and the Pharmacology Laboratory of the Institute of Medicinal Biotechnology for support.

References

First citationAnderson, V. E. & Osheroff, N. (2001). Curr. Pharm. Des. 7, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBall, P., Tilloston, G. & Fernald, A. (1998). Expert Opin. Investig. Drugs, 7, 761–783.  CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryskier, A. (1997). Expert Opin. Investig. Drugs, 6, 1227–1245.  CrossRef PubMed CAS Google Scholar
First citationDang, Z., Yang, Y. & Ji, R. (2007). Bioorg. Med. Chem. Lett. 17, 4523–4526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Sarro, A. & De Sarro, G. (2001). Curr. Med. Chem. 8, 371–384.  Web of Science PubMed CAS Google Scholar
First citationRay, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161–180.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Guo, Q. & Wang, Y. C. (2008). Acta Pharmacol. Sin. 43, 819–827.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds