organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzamido­methyl-4-[(E)-2-chloro­benzyl­­idene­amino]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 November 2008; accepted 1 December 2008; online 10 December 2008)

In the title compound, C17H14ClN5OS, the dihedral angles formed by the two benzene rings with the triazole ring are 66.88 (3) and 19.16 (3)°, and the benzene rings are inclined to each other with a dihedral angle of 78.40 (3)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the (100) planes, and centrosymmetric ππ stacking inter­actions [centroid–centroid distance = 3.7717 (5) Å] are formed between benzene rings in neighbouring layers.

Related literature

For pharmaceutical and other applications of triazole compounds, see: Almasirad et al. (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-6059.]); Al-Soud et al. (2003[Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem. 11, 1701-1708.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); Kalluraya et al. (1996[Kalluraya, B., Shetty, S. N., Gunaga, P. & Holla, B. S. (1996). Boll. Chim. Farm. 135, 638-642.]); Kawashima et al. (1987[Kawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem. Abstr. 106, 138475x.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClN5OS

  • Mr = 371.84

  • Monoclinic, P 21 /c

  • a = 17.0185 (6) Å

  • b = 8.0905 (3) Å

  • c = 12.8292 (5) Å

  • β = 105.962 (2)°

  • V = 1698.32 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100.0 (1) K

  • 0.70 × 0.48 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.785, Tmax = 0.949

  • 57891 measured reflections

  • 7463 independent reflections

  • 6349 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.09

  • 7463 reflections

  • 234 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.85 (1) 1.89 (1) 2.7362 (10) 175 (1)
N1—H1N1⋯O1ii 0.84 (1) 2.29 (1) 2.9450 (10) 134 (2)
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,2,4-Triazoles and their derivatives represent a rapidly developing field in modern heterocyclic chemistry, in part due to their antibacterial, antifungal, antitubercular, anticancer (Kalluraya et al., 1996), antitumor (Al-Soud et al., 2003), anticonvulsant (Almasirad et al., 2004), anti-inflammatory, and analgesic properties (Amir & Shikha, 2004). Certain 1,2,4-triazoles also find applications in the preparation of photographic plates, polymers, and as analytical agents (Kawashima et al., 1986). In continuation of our interest in the synthesis of chemically and biologically important heterocycles, we report here a substituted 1,2,4-triazole Schiff base.

In the title compound (Fig. 1), the dihedral angles formed by the triazole (N2/N3/C10/N4/C9) ring with the two benzene rings (C1–C6; C12–C17) are 66.88 (3)° and 19.16 (3)° respectively. The benzene rings (C1–C6; C12–C17) form a dihedral angle of 78.40 (3)°, indicating that they are inclined to each other. The structure contains intermolecular N—H···O hydrogen bonds (see Table), linking the molecules into two-dimensional networks parallel to the (100) planes (Fig. 2). Between layers, ππ stacking interactions are formed between inversion-related benzene rings (C12–C17 and its symmetry equivalent 2-x, 2-y, 1-z) with centroid-centroid distance 3.7717 (5) Å.

Related literature top

For pharmaceutical and other applications of triazole compounds, see: Almasirad et al. (2004); Al-Soud et al. (2003); Amir & Shikha (2004); Kalluraya et al. (1996); Kawashima et al. (1987).

Experimental top

The title compound was obtained by refluxing N-[(4-amino-5-sulfanyl-4H-1, 2,4-triazol-3-yl)methyl]benzamide (0.01 mol) and 2-chlorobenzaldehyde (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated sulfuric acid for 5 h. The solid product obtained was collected by filtration, washed with ethanol and dried. The product was then recrystallized using ethanol.

Refinement top

The amino H atoms were located in a difference map and refined with restraints of N—H = 0.85 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93Å (aromatic) or 0.97Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Projection down the a axis onto one two-dimensional hydrogen-bond network.
3-Benzamidomethyl-4-[(E)-2-chlorobenzylideneamino]-1H-1,2,4- triazole-5(4H)-thione top
Crystal data top
C17H14ClN5OSF(000) = 768
Mr = 371.84Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9004 reflections
a = 17.0185 (6) Åθ = 2.6–26.3°
b = 8.0905 (3) ŵ = 0.36 mm1
c = 12.8292 (5) ÅT = 100 K
β = 105.962 (2)°Plate, colourless
V = 1698.32 (11) Å30.70 × 0.48 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7463 independent reflections
Radiation source: fine-focus sealed tube6349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2727
Tmin = 0.785, Tmax = 0.949k = 1213
57891 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4785P]
where P = (Fo2 + 2Fc2)/3
7463 reflections(Δ/σ)max = 0.004
234 parametersΔρmax = 0.59 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H14ClN5OSV = 1698.32 (11) Å3
Mr = 371.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0185 (6) ŵ = 0.36 mm1
b = 8.0905 (3) ÅT = 100 K
c = 12.8292 (5) Å0.70 × 0.48 × 0.15 mm
β = 105.962 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7463 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6349 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.949Rint = 0.025
57891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
7463 reflectionsΔρmin = 0.23 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.007210 (13)1.03657 (3)0.261198 (17)0.02066 (5)
S10.757666 (14)1.12198 (3)0.021681 (19)0.02205 (6)
O10.52774 (4)1.20878 (8)0.36983 (5)0.01823 (12)
N10.52114 (5)0.94734 (9)0.30979 (6)0.01683 (13)
N20.56478 (5)1.09220 (10)0.13014 (6)0.01817 (13)
N30.60840 (5)1.13484 (10)0.05794 (6)0.01859 (14)
N40.69550 (4)1.02508 (9)0.19194 (6)0.01486 (12)
N50.75857 (4)0.95136 (10)0.26923 (6)0.01636 (13)
C10.37543 (6)1.16562 (13)0.41825 (8)0.02102 (16)
H1A0.41291.23330.46590.025*
C20.29456 (7)1.16030 (15)0.42187 (9)0.0288 (2)
H2A0.27791.22320.47260.035*
C30.23860 (7)1.06069 (16)0.34943 (11)0.0332 (3)
H3A0.18461.05690.35220.040*
C40.26273 (6)0.96688 (15)0.27305 (10)0.0308 (2)
H4A0.22470.90190.22410.037*
C50.34392 (6)0.96984 (12)0.26950 (8)0.02199 (17)
H5A0.36030.90640.21880.026*
C60.40030 (5)1.06870 (11)0.34268 (7)0.01574 (14)
C70.48744 (5)1.07999 (10)0.34185 (6)0.01337 (13)
C80.60617 (5)0.94817 (11)0.30987 (7)0.01689 (14)
H8A0.62630.83540.31620.020*
H8B0.63761.00900.37270.020*
C90.61919 (5)1.02410 (10)0.20985 (7)0.01548 (14)
C100.68828 (5)1.09511 (11)0.09059 (7)0.01650 (14)
C110.83182 (5)0.96240 (11)0.26128 (7)0.01659 (14)
H11A0.84361.02040.20480.020*
C120.89642 (5)0.87989 (10)0.34477 (6)0.01453 (13)
C130.97907 (5)0.90723 (10)0.35310 (6)0.01472 (13)
C141.04079 (5)0.83357 (11)0.43414 (7)0.01758 (15)
H14A1.09540.85400.43870.021*
C151.01981 (6)0.72926 (11)0.50811 (7)0.01963 (16)
H15A1.06060.68040.56300.024*
C160.93781 (6)0.69731 (12)0.50042 (7)0.02018 (16)
H16A0.92400.62640.54970.024*
C170.87707 (5)0.77125 (11)0.41949 (7)0.01766 (14)
H17A0.82260.74870.41450.021*
H1N30.5848 (9)1.1788 (19)0.0026 (9)0.034 (4)*
H1N10.4932 (9)0.8627 (15)0.2855 (13)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01679 (9)0.02638 (11)0.01858 (9)0.00361 (7)0.00446 (7)0.00349 (7)
S10.01723 (10)0.03144 (12)0.01831 (10)0.00069 (8)0.00629 (7)0.00525 (8)
O10.0181 (3)0.0162 (3)0.0190 (3)0.0035 (2)0.0027 (2)0.0028 (2)
N10.0142 (3)0.0155 (3)0.0217 (3)0.0019 (2)0.0065 (2)0.0035 (2)
N20.0139 (3)0.0220 (3)0.0183 (3)0.0027 (3)0.0040 (2)0.0024 (3)
N30.0147 (3)0.0234 (3)0.0168 (3)0.0032 (3)0.0030 (2)0.0044 (3)
N40.0115 (3)0.0184 (3)0.0143 (3)0.0024 (2)0.0029 (2)0.0018 (2)
N50.0130 (3)0.0202 (3)0.0147 (3)0.0035 (2)0.0020 (2)0.0013 (2)
C10.0211 (4)0.0247 (4)0.0198 (4)0.0061 (3)0.0098 (3)0.0049 (3)
C20.0242 (5)0.0374 (5)0.0302 (5)0.0127 (4)0.0163 (4)0.0145 (4)
C30.0160 (4)0.0428 (6)0.0430 (6)0.0060 (4)0.0117 (4)0.0218 (5)
C40.0146 (4)0.0349 (6)0.0396 (6)0.0037 (4)0.0015 (4)0.0115 (4)
C50.0158 (4)0.0223 (4)0.0255 (4)0.0022 (3)0.0017 (3)0.0029 (3)
C60.0135 (3)0.0171 (3)0.0170 (3)0.0011 (3)0.0049 (3)0.0037 (3)
C70.0137 (3)0.0147 (3)0.0115 (3)0.0003 (2)0.0032 (2)0.0006 (2)
C80.0138 (3)0.0203 (4)0.0173 (3)0.0020 (3)0.0055 (3)0.0012 (3)
C90.0125 (3)0.0175 (3)0.0165 (3)0.0018 (3)0.0040 (3)0.0000 (3)
C100.0148 (3)0.0184 (3)0.0155 (3)0.0009 (3)0.0029 (3)0.0014 (3)
C110.0134 (3)0.0196 (4)0.0160 (3)0.0014 (3)0.0028 (3)0.0018 (3)
C120.0126 (3)0.0161 (3)0.0143 (3)0.0014 (2)0.0027 (2)0.0004 (2)
C130.0135 (3)0.0161 (3)0.0143 (3)0.0009 (3)0.0032 (2)0.0006 (2)
C140.0135 (3)0.0193 (4)0.0180 (3)0.0028 (3)0.0011 (3)0.0015 (3)
C150.0192 (4)0.0188 (4)0.0184 (3)0.0046 (3)0.0008 (3)0.0018 (3)
C160.0218 (4)0.0196 (4)0.0187 (4)0.0020 (3)0.0048 (3)0.0038 (3)
C170.0160 (3)0.0196 (4)0.0177 (3)0.0008 (3)0.0051 (3)0.0016 (3)
Geometric parameters (Å, º) top
Cl1—C131.7393 (9)C4—C51.3951 (14)
S1—C101.6726 (9)C4—H4A0.930
O1—C71.2449 (10)C5—C61.3951 (13)
N1—C71.3340 (11)C5—H5A0.930
N1—C81.4468 (11)C6—C71.4887 (11)
N1—H1N10.84 (1)C8—C91.4930 (12)
N2—C91.2984 (11)C8—H8A0.970
N2—N31.3807 (11)C8—H8B0.970
N3—C101.3467 (11)C11—C121.4677 (12)
N3—H1N30.85 (1)C11—H11A0.930
N4—C91.3797 (11)C12—C131.3987 (11)
N4—N51.3804 (10)C12—C171.4047 (12)
N4—C101.3924 (11)C13—C141.3924 (12)
N5—C111.2816 (11)C14—C151.3879 (13)
C1—C21.3905 (14)C14—H14A0.930
C1—C61.3999 (13)C15—C161.3958 (13)
C1—H1A0.930C15—H15A0.930
C2—C31.3904 (19)C16—C171.3836 (12)
C2—H2A0.930C16—H16A0.930
C3—C41.3879 (19)C17—H17A0.930
C3—H3A0.930
C7—N1—C8120.72 (7)N1—C8—H8A109.0
C7—N1—H1N1121.3 (12)C9—C8—H8A109.0
C8—N1—H1N1117.8 (12)N1—C8—H8B109.0
C9—N2—N3103.64 (7)C9—C8—H8B109.0
C10—N3—N2114.49 (7)H8A—C8—H8B107.8
C10—N3—H1N3124.6 (11)N2—C9—N4111.50 (7)
N2—N3—H1N3120.8 (11)N2—C9—C8127.53 (8)
C9—N4—N5117.35 (7)N4—C9—C8120.96 (7)
C9—N4—C10108.21 (7)N3—C10—N4102.12 (7)
N5—N4—C10134.27 (7)N3—C10—S1127.13 (7)
C11—N5—N4119.60 (7)N4—C10—S1130.74 (7)
C2—C1—C6119.76 (10)N5—C11—C12117.39 (8)
C2—C1—H1A120.1N5—C11—H11A121.3
C6—C1—H1A120.1C12—C11—H11A121.3
C3—C2—C1119.87 (10)C13—C12—C17117.80 (7)
C3—C2—H2A120.1C13—C12—C11121.30 (7)
C1—C2—H2A120.1C17—C12—C11120.90 (8)
C4—C3—C2120.50 (10)C14—C13—C12121.71 (8)
C4—C3—H3A119.7C14—C13—Cl1118.16 (6)
C2—C3—H3A119.7C12—C13—Cl1120.13 (6)
C3—C4—C5120.11 (11)C15—C14—C13119.19 (8)
C3—C4—H4A119.9C15—C14—H14A120.4
C5—C4—H4A119.9C13—C14—H14A120.4
C6—C5—C4119.47 (10)C14—C15—C16120.29 (8)
C6—C5—H5A120.3C14—C15—H15A119.9
C4—C5—H5A120.3C16—C15—H15A119.9
C5—C6—C1120.28 (8)C17—C16—C15119.94 (8)
C5—C6—C7122.17 (8)C17—C16—H16A120.0
C1—C6—C7117.52 (8)C15—C16—H16A120.0
O1—C7—N1120.84 (8)C16—C17—C12121.04 (8)
O1—C7—C6121.35 (8)C16—C17—H17A119.5
N1—C7—C6117.81 (7)C12—C17—H17A119.5
N1—C8—C9112.71 (7)
C9—N2—N3—C100.01 (11)C10—N4—C9—C8176.80 (8)
C9—N4—N5—C11173.61 (8)N1—C8—C9—N23.33 (13)
C10—N4—N5—C1111.79 (14)N1—C8—C9—N4175.30 (7)
C6—C1—C2—C30.94 (15)N2—N3—C10—N41.18 (10)
C1—C2—C3—C40.30 (16)N2—N3—C10—S1177.48 (7)
C2—C3—C4—C51.02 (16)C9—N4—C10—N31.84 (9)
C3—C4—C5—C60.50 (15)N5—N4—C10—N3176.80 (9)
C4—C5—C6—C10.73 (14)C9—N4—C10—S1176.74 (7)
C4—C5—C6—C7178.80 (8)N5—N4—C10—S11.79 (15)
C2—C1—C6—C51.45 (13)N4—N5—C11—C12179.19 (7)
C2—C1—C6—C7179.61 (8)N5—C11—C12—C13169.43 (8)
C8—N1—C7—O11.88 (12)N5—C11—C12—C1710.21 (12)
C8—N1—C7—C6178.27 (7)C17—C12—C13—C141.71 (12)
C5—C6—C7—O1148.96 (9)C11—C12—C13—C14177.95 (8)
C1—C6—C7—O129.16 (12)C17—C12—C13—Cl1178.51 (6)
C5—C6—C7—N130.88 (12)C11—C12—C13—Cl11.83 (11)
C1—C6—C7—N1151.00 (8)C12—C13—C14—C150.51 (13)
C7—N1—C8—C983.83 (10)Cl1—C13—C14—C15179.70 (7)
N3—N2—C9—N41.23 (10)C13—C14—C15—C160.73 (13)
N3—N2—C9—C8177.50 (8)C14—C15—C16—C170.71 (14)
N5—N4—C9—N2177.97 (7)C15—C16—C17—C120.54 (14)
C10—N4—C9—N22.04 (10)C13—C12—C17—C161.72 (13)
N5—N4—C9—C80.86 (12)C11—C12—C17—C16177.94 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.85 (1)1.89 (1)2.7362 (10)175 (1)
N1—H1N1···O1ii0.84 (1)2.29 (1)2.9450 (10)134 (2)
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14ClN5OS
Mr371.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.0185 (6), 8.0905 (3), 12.8292 (5)
β (°) 105.962 (2)
V3)1698.32 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.70 × 0.48 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.785, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
57891, 7463, 6349
Rint0.025
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.09
No. of reflections7463
No. of parameters234
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.85 (1)1.89 (1)2.7362 (10)175 (1)
N1—H1N1···O1ii0.84 (1)2.29 (1)2.9450 (10)134 (2)
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

H-KF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–6059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem. 11, 1701–1708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalluraya, B., Shetty, S. N., Gunaga, P. & Holla, B. S. (1996). Boll. Chim. Farm. 135, 638–642.  CAS PubMed Google Scholar
First citationKawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem. Abstr. 106, 138475x.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds