supplementary materials


Acta Cryst. (2009). E65, m47    [ doi:10.1107/S160053680804155X ]

Poly[(3,5-dinitrobenzoato)-[mu]3-triazolato-cobalt(II)]

X.-L. Qi

Abstract top

The title compound, [Co(C2H2N3)(C7H3N2O6)]n, was obtained by the reaction of CoCl2, triazole and 3,5-dinitrobenzoic acid in a 1:1:1 ratio. The Co centre is in a distorted tetrahedral coordination by three N atoms of three different triazole ligands and one O atom of the 3,5-dinitrobenzoate anion.

Comment top

The asymmetric unit of the title compound is shown in Fig. 1. Co is four-coordinated by one O atom of a 3,5-dinitrobenzoic acid anion and three triazole N atoms in a tetrahedral geometry. The Co—O/N bond lengths of 1.9510 (13)–2.0396 (16)Å are in the normal range. The triazole and 3,5-dinitrobenzoic acid ligands adopt tridentate and monodentate coordinating modes, respectively. As shown in Figs. 2a and 2b, cobalt ions are connected by triazole ligands to generate a two-dimensional net with the 3,5-dinitrobenzoic acid ligands stacking out of this net. There is not obvious supramolecular interaction between the two-dimensional nets.

Related literature top

For background? a related structure? see: Park et al. (2006).

Experimental top

CoCl2 (1.0 mmol), 3,5-dinitrobenzoic acid (1 mmol), and triazole (1 mmol) were dissolved in water (10 ml). The solution was heated in a 25 ml Teflon lined reaction vessel at 433 K for ca 3 days and then cooled to room temperature. Purple crystals were obtained in a yield of 85%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit with 50% displacement ellipsoids for non-H atoms. Symmetry codes: (A) -x,y - 1/2,-z + 1/2; (B) x,-y + 1/2,z + 1/2.
[Figure 2] Fig. 2. View of the two-dimensional net.
Poly[(3,5-dinitrobenzoato)-µ3-triazolato-cobalt(II)] top
Crystal data top
[Co(C2H2N3)(C7H3N2O6)]F(000) = 676
Mr = 338.11Dx = 1.972 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.326 (2) ÅCell parameters from 8661 reflections
b = 9.4043 (19) Åθ = 3.4–27.5°
c = 10.696 (2) ŵ = 1.55 mm1
β = 91.22 (3)°T = 296 K
V = 1139.0 (4) Å3Block, red
Z = 40.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2602 independent reflections
Radiation source: rotating anode2256 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.812, Tmax = 0.861k = 1212
10929 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8847P]
where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C2H2N3)(C7H3N2O6)]V = 1139.0 (4) Å3
Mr = 338.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.326 (2) ŵ = 1.55 mm1
b = 9.4043 (19) ÅT = 296 K
c = 10.696 (2) Å0.14 × 0.12 × 0.10 mm
β = 91.22 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2256 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.861Rint = 0.041
10929 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.36 e Å3
2602 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01347 (15)0.35028 (19)0.25548 (18)0.0159 (4)
H10.05950.37680.32260.019*
C20.10642 (16)0.24145 (19)0.14215 (18)0.0176 (4)
H20.16170.17610.11450.021*
C30.32087 (15)0.02322 (19)0.30024 (19)0.0187 (4)
C40.45442 (15)0.03032 (19)0.29392 (19)0.0174 (4)
C50.51022 (16)0.0334 (2)0.19406 (19)0.0186 (4)
H50.46680.08300.13350.022*
C60.52033 (16)0.1050 (2)0.38296 (19)0.0181 (4)
H60.48380.14860.44990.022*
C70.64177 (16)0.1134 (2)0.37020 (19)0.0185 (4)
C80.70035 (16)0.0510 (2)0.27338 (19)0.0199 (4)
H80.78190.05740.26680.024*
C90.63179 (16)0.0217 (2)0.18643 (19)0.0195 (4)
Co10.10473 (2)0.09672 (2)0.39456 (2)0.01158 (8)
N10.05927 (13)0.23721 (15)0.25698 (14)0.0148 (3)
N20.06612 (12)0.34762 (16)0.07340 (14)0.0142 (3)
N30.01218 (12)0.41947 (15)0.14790 (14)0.0140 (3)
N40.69050 (14)0.08206 (18)0.07799 (17)0.0236 (4)
N50.71165 (14)0.19524 (18)0.46234 (16)0.0217 (4)
O10.27667 (11)0.08348 (14)0.39657 (14)0.0209 (3)
O20.26354 (12)0.03470 (16)0.21590 (14)0.0270 (3)
O30.79840 (13)0.0720 (2)0.07570 (16)0.0399 (4)
O40.63013 (13)0.13889 (16)0.00391 (14)0.0277 (3)
O50.65828 (13)0.25969 (17)0.54211 (16)0.0339 (4)
O60.81961 (12)0.19449 (16)0.45430 (15)0.0296 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (8)0.0187 (8)0.0137 (9)0.0024 (7)0.0040 (7)0.0001 (7)
C20.0198 (9)0.0189 (9)0.0144 (9)0.0055 (7)0.0045 (7)0.0008 (7)
C30.0146 (8)0.0190 (9)0.0226 (10)0.0003 (7)0.0033 (7)0.0074 (8)
C40.0144 (8)0.0176 (8)0.0202 (10)0.0012 (7)0.0023 (7)0.0035 (8)
C50.0176 (8)0.0192 (9)0.0190 (10)0.0008 (7)0.0001 (7)0.0011 (8)
C60.0161 (8)0.0188 (9)0.0194 (10)0.0029 (7)0.0027 (7)0.0019 (8)
C70.0155 (8)0.0205 (9)0.0194 (10)0.0001 (7)0.0015 (7)0.0034 (8)
C80.0135 (8)0.0246 (9)0.0217 (10)0.0032 (8)0.0020 (7)0.0050 (8)
C90.0188 (9)0.0214 (9)0.0184 (10)0.0058 (8)0.0044 (7)0.0024 (8)
Co10.01125 (12)0.01384 (12)0.00973 (13)0.00079 (9)0.00236 (8)0.00031 (9)
N10.0168 (7)0.0157 (7)0.0120 (8)0.0016 (6)0.0038 (6)0.0011 (6)
N20.0142 (7)0.0166 (7)0.0120 (8)0.0020 (6)0.0036 (6)0.0009 (6)
N30.0129 (7)0.0174 (7)0.0117 (8)0.0025 (6)0.0036 (6)0.0008 (6)
N40.0217 (8)0.0280 (9)0.0211 (9)0.0074 (7)0.0047 (7)0.0026 (7)
N50.0196 (8)0.0230 (8)0.0225 (9)0.0005 (7)0.0021 (7)0.0034 (7)
O10.0128 (6)0.0242 (7)0.0260 (8)0.0001 (5)0.0055 (5)0.0001 (6)
O20.0178 (6)0.0368 (8)0.0265 (8)0.0064 (6)0.0004 (6)0.0003 (7)
O30.0182 (7)0.0697 (12)0.0321 (10)0.0115 (8)0.0057 (6)0.0112 (9)
O40.0324 (8)0.0299 (7)0.0210 (8)0.0010 (6)0.0032 (6)0.0035 (6)
O50.0308 (8)0.0380 (9)0.0329 (9)0.0016 (7)0.0004 (7)0.0153 (7)
O60.0157 (6)0.0387 (8)0.0343 (9)0.0033 (6)0.0041 (6)0.0045 (7)
Geometric parameters (Å, °) top
C1—N31.322 (2)C7—N51.469 (3)
C1—N11.345 (2)C8—C91.380 (3)
C1—H10.9300C8—H80.9300
C2—N21.316 (2)C9—N41.464 (3)
C2—N11.350 (2)Co1—O11.9510 (13)
C2—H20.9300Co1—N3i2.0158 (15)
C3—O21.228 (2)Co1—N12.0356 (16)
C3—O11.287 (2)Co1—N2ii2.0396 (16)
C3—C41.517 (2)N2—N31.381 (2)
C4—C61.388 (3)N2—Co1iii2.0396 (16)
C4—C51.389 (3)N3—Co1iv2.0158 (15)
C5—C91.385 (3)N4—O41.223 (2)
C5—H50.9300N4—O31.227 (2)
C6—C71.387 (3)N5—O51.218 (2)
C6—H60.9300N5—O61.228 (2)
C7—C81.373 (3)
N3—C1—N1112.41 (16)C8—C9—N4117.87 (16)
N3—C1—H1123.8C5—C9—N4118.99 (18)
N1—C1—H1123.8O1—Co1—N3i117.64 (6)
N2—C2—N1113.05 (16)O1—Co1—N1106.65 (6)
N2—C2—H2123.5N3i—Co1—N1104.57 (6)
N1—C2—H2123.5O1—Co1—N2ii103.88 (7)
O2—C3—O1125.11 (17)N3i—Co1—N2ii107.62 (6)
O2—C3—C4119.94 (18)N1—Co1—N2ii117.09 (6)
O1—C3—C4114.94 (17)C1—N1—C2102.70 (15)
C6—C4—C5119.94 (17)C1—N1—Co1131.85 (13)
C6—C4—C3120.92 (17)C2—N1—Co1125.30 (12)
C5—C4—C3119.07 (17)C2—N2—N3105.55 (15)
C9—C5—C4118.70 (18)C2—N2—Co1iii129.80 (12)
C9—C5—H5120.7N3—N2—Co1iii124.66 (11)
C4—C5—H5120.7C1—N3—N2106.29 (14)
C7—C6—C4118.76 (18)C1—N3—Co1iv125.99 (12)
C7—C6—H6120.6N2—N3—Co1iv127.71 (12)
C4—C6—H6120.6O4—N4—O3124.17 (18)
C8—C7—C6123.08 (18)O4—N4—C9118.73 (16)
C8—C7—N5117.89 (17)O3—N4—C9117.10 (17)
C6—C7—N5119.01 (18)O5—N5—O6124.19 (18)
C7—C8—C9116.48 (17)O5—N5—C7117.56 (16)
C7—C8—H8121.8O6—N5—C7118.25 (17)
C9—C8—H8121.8C3—O1—Co1115.13 (12)
C8—C9—C5123.05 (18)
O2—C3—C4—C6174.83 (18)N3i—Co1—N1—C281.85 (15)
O1—C3—C4—C63.9 (3)N2ii—Co1—N1—C2159.19 (14)
O2—C3—C4—C52.1 (3)N1—C2—N2—N30.6 (2)
O1—C3—C4—C5179.20 (17)N1—C2—N2—Co1iii179.28 (12)
C6—C4—C5—C90.6 (3)N1—C1—N3—N20.1 (2)
C3—C4—C5—C9177.53 (16)N1—C1—N3—Co1iv178.75 (11)
C5—C4—C6—C70.4 (3)C2—N2—N3—C10.41 (18)
C3—C4—C6—C7177.31 (17)Co1iii—N2—N3—C1179.45 (12)
C4—C6—C7—C80.1 (3)C2—N2—N3—Co1iv178.44 (12)
C4—C6—C7—N5178.47 (17)Co1iii—N2—N3—Co1iv1.7 (2)
C6—C7—C8—C90.4 (3)C8—C9—N4—O4175.39 (17)
N5—C7—C8—C9178.19 (16)C5—C9—N4—O41.3 (3)
C7—C8—C9—C50.2 (3)C8—C9—N4—O34.7 (3)
C7—C8—C9—N4176.34 (17)C5—C9—N4—O3178.66 (18)
C4—C5—C9—C80.3 (3)C8—C7—N5—O5174.23 (18)
C4—C5—C9—N4176.77 (17)C6—C7—N5—O54.4 (3)
N3—C1—N1—C20.2 (2)C8—C7—N5—O65.8 (3)
N3—C1—N1—Co1175.77 (12)C6—C7—N5—O6175.59 (17)
N2—C2—N1—C10.5 (2)O2—C3—O1—Co16.3 (2)
N2—C2—N1—Co1176.45 (12)C4—C3—O1—Co1172.33 (11)
O1—Co1—N1—C1131.24 (16)N3i—Co1—O1—C348.42 (14)
N3i—Co1—N1—C1103.46 (16)N1—Co1—O1—C368.51 (13)
N2ii—Co1—N1—C115.50 (18)N2ii—Co1—O1—C3167.19 (12)
O1—Co1—N1—C243.46 (16)
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x, y+1/2, −z+1/2.
references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Park, H., Moureau, D. M. & Parise, J. B. (2006). Chem. Mater. 18, 525–531.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.