metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m82-m83

Tetra­kis(μ-2-chloro-4-nitro­benzoato-κ2O:O′)bis­­[aqua­copper(II)]

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 November 2008; accepted 10 December 2008; online 17 December 2008)

In the title binuclear copper(II) complex, [Cu2(C7H3ClNO4)4(H2O)2], each of the two independent CuII center is five-coordinated by four O atoms of the carboxyl­ate groups in the basal plane and one O atom of a water mol­ecule in the apical position, in a distorted square-pyramidal geometry. The Cu—Cu distance is 2.6458 (4) Å. In the crystal structure, the dinuclear units are linked into a three-dimensional network by O—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds. One of the Cl atoms is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2).

Related literature

For general background, see: Balaraman et al. (2006[Balaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem. 100, 316-330.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Kabbani et al. (2004[Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 11, 749-756.]); Stachová et al. (2004[Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303-1308.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3ClNO4)4(H2O)2]

  • Mr = 965.33

  • Monoclinic, P c

  • a = 7.6721 (2) Å

  • b = 15.2938 (4) Å

  • c = 14.5653 (3) Å

  • β = 102.327 (1)°

  • V = 1669.63 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 293 (2) K

  • 0.76 × 0.19 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.360, Tmax = 0.844

  • 61401 measured reflections

  • 18745 independent reflections

  • 13379 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.11

  • 18745 reflections

  • 516 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 8242 Friedel pairs

  • Flack parameter: 0.526 (8)

Table 1
Selected bond lengths (Å)

Cu1—O7 1.953 (2)
Cu1—O4 1.967 (2)
Cu1—O5 1.971 (2)
Cu1—O2 1.983 (2)
Cu1—O2W 2.159 (2)
Cu2—O3 1.948 (2)
Cu2—O8 1.964 (2)
Cu2—O1 1.968 (2)
Cu2—O6 1.987 (2)
Cu2—O1W 2.137 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O13i 0.85 2.35 2.910 (3) 124
O1W—H2W1⋯O2ii 0.85 1.99 2.838 (3) 175
O2W—H1W2⋯O9iii 0.82 2.15 2.927 (3) 158
O2W—H2W2⋯O6iv 0.85 1.98 2.826 (3) 173
C1—H1A⋯Cl1v 0.93 2.78 3.417 (3) 127
C4—H4A⋯O14vi 0.93 2.51 3.331 (4) 147
C8—H8A⋯O12v 0.93 2.38 3.269 (4) 159
C18—H18A⋯O10vii 0.93 2.55 3.364 (4) 147
C22—H22A⋯O16viii 0.93 2.36 3.240 (4) 158
C23—H23A⋯O2Wi 0.93 2.51 3.385 (3) 157
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) x-1, y-1, z; (vii) x+1, y+1, z; (viii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In our quest to study the biological properties of CuII complexes, we have managed to prepare several water soluble CuII complexes. CuII complexes have been known to exhibit DNA cleavage activity in vitro (Balaraman et al., 2006). Herein, we report the preparation and crystal structure of the title compound.

The coordination geometry around each CuII atom is square-pyramidal. Four O atoms, one each from the carboxylate groups of four organic ligands, form the basal plane with an average Cu—O bond distance of 1.968 (2) Å. The O atom of the water molecules lie in the apical position with an average Cu—O distance of 2.148 (2) Å. The Cu1 and Cu2 atoms are slightly displaced from the corresponding basal plane by 0.2037 (2) and 0.1959 (2) Å, respectively. The Cu1—Cu2 distance is 2.6458 (4) Å. Similar characteristics of the copper atom were also reported by Kabbani et al. (2004) and Stachová et al. (2004).

Bond lengths in the ligand show normal values (Allen et al., 1987). Dihedral angles between nitro groups and benzene rings are: 6.3 (4) [C1-C6/O9,O10,N1], 16.0 (3) [C8-C13/O11,O12,N2], 6.5 (4) [C15-C20/O13,O14,N3] and 19.9 (3) Å [C22-C27/O15,O16,N4].

In the crystal structure, O—H···O, C—H···O and C—H···Cl intermolecular interactions (Table 2) form a three-dimensional network (Fig.2).

Related literature top

For general background, see: Balaraman et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Kabbani et al. (2004); Stachová et al. (2004).

Experimental top

An ethanol solution (50 ml) of 2-chloro-4-nitrobenzoic acid (4.84 g, 0.024 mol) was added to a solution of copper(II) sulfate pentahydrate (3.00 g, 0.012 mol) in ethanol (50 ml). This mixture was then stirred and refluxed and left to cool down to room temperature. After a few days of slow evaporation, blue crystals which are suitable for X-ray analysis were collected.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the O atom, with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and Uiso(H) = 1.5Ueq(C). Atom Cl3 attached to one of the phenyl rings is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2). The structure shows a pseudo centre of symmetry. It can be solved and refined in the space group P21/c but the final R value (0.098) is large. The highest residual electron density peak is located at 1.02 Å from Cl3A and the deepest hole is located at 0.63Å from Cu1. The crystal is a twin with BASF = 0.526 (8).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are given.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dotted lines. Only the major disorder component is shown.
Tetrakis(µ-2-chloro-4-nitrobenzoato-κ2O:O')bis[aquacopper(II)] top
Crystal data top
[Cu2(C7H3ClNO4)4(H2O)2]F(000) = 964
Mr = 965.33Dx = 1.920 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 7272 reflections
a = 7.6721 (2) Åθ = 2.7–38.1°
b = 15.2938 (4) ŵ = 1.69 mm1
c = 14.5653 (3) ÅT = 293 K
β = 102.327 (1)°Block, blue
V = 1669.63 (7) Å30.76 × 0.19 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
18745 independent reflections
Radiation source: fine-focus sealed tube13379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 40.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.360, Tmax = 0.844k = 2727
61401 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0545P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
18745 reflectionsΔρmax = 1.75 e Å3
516 parametersΔρmin = 0.85 e Å3
2 restraintsAbsolute structure: Flack (1983), 8242 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.526 (8)
Crystal data top
[Cu2(C7H3ClNO4)4(H2O)2]V = 1669.63 (7) Å3
Mr = 965.33Z = 2
Monoclinic, PcMo Kα radiation
a = 7.6721 (2) ŵ = 1.69 mm1
b = 15.2938 (4) ÅT = 293 K
c = 14.5653 (3) Å0.76 × 0.19 × 0.10 mm
β = 102.327 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
18745 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
13379 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.844Rint = 0.041
61401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.121Δρmax = 1.75 e Å3
S = 1.11Δρmin = 0.85 e Å3
18745 reflectionsAbsolute structure: Flack (1983), 8242 Friedel pairs
516 parametersAbsolute structure parameter: 0.526 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.12722 (3)0.783035 (19)0.823603 (19)0.01681 (6)
Cu20.43478 (3)0.72693 (2)0.791272 (19)0.01749 (6)
Cl10.09737 (12)0.49165 (5)0.90348 (5)0.02859 (15)
Cl20.26779 (10)0.78853 (4)1.14338 (5)0.02285 (13)
Cl3A0.51796 (19)0.94108 (7)1.07198 (7)0.0375 (3)0.650 (2)
H19A0.49681.03060.76210.045*0.650 (2)
Cl3B0.4619 (3)1.00985 (13)0.71300 (12)0.0219 (4)0.350 (2)
H15A0.53760.96931.03670.026*0.350 (2)
Cl40.28627 (11)0.71075 (4)0.47526 (5)0.02455 (14)
O10.2962 (3)0.62123 (13)0.74654 (14)0.0232 (4)
O20.0341 (3)0.66738 (13)0.77463 (14)0.0208 (4)
O30.4781 (3)0.67950 (13)0.91825 (14)0.0231 (4)
O40.2187 (3)0.72835 (14)0.94666 (15)0.0242 (4)
O50.2647 (3)0.89022 (14)0.86431 (15)0.0245 (4)
O60.5291 (3)0.84210 (12)0.84230 (14)0.0216 (4)
O70.0803 (3)0.82590 (13)0.69431 (13)0.0205 (4)
O80.3478 (3)0.78407 (13)0.66932 (15)0.0234 (4)
O90.1850 (3)0.25394 (14)0.55559 (15)0.0271 (4)
O100.1868 (4)0.22569 (14)0.70107 (18)0.0326 (5)
O110.6789 (3)0.47095 (14)1.34252 (16)0.0284 (4)
O120.5010 (4)0.55861 (16)1.39558 (16)0.0381 (6)
O130.7524 (3)1.25825 (14)1.05715 (16)0.0295 (4)
O140.7563 (4)1.28442 (14)0.91156 (19)0.0354 (6)
O150.1241 (3)1.02192 (14)0.26224 (15)0.0282 (4)
O160.0681 (4)0.93987 (16)0.21492 (17)0.0414 (7)
N10.1544 (4)0.27333 (14)0.63933 (19)0.0218 (5)
N20.5679 (3)0.52972 (16)1.33285 (17)0.0239 (5)
N30.7216 (4)1.23743 (17)0.9736 (2)0.0250 (5)
N40.0059 (3)0.96664 (15)0.27622 (17)0.0224 (5)
C10.0091 (4)0.50152 (19)0.6236 (2)0.0243 (5)
H1A0.02220.54240.57830.029*
C20.0583 (4)0.41837 (18)0.59602 (19)0.0218 (5)
H2A0.08930.40280.53290.026*
C30.0775 (4)0.35938 (17)0.66677 (19)0.0198 (5)
C40.0312 (4)0.38101 (17)0.76208 (19)0.0204 (5)
H4A0.04560.34090.80780.024*
C50.0357 (4)0.46238 (18)0.78645 (18)0.0197 (5)
C60.0573 (3)0.52397 (17)0.71939 (18)0.0178 (4)
C70.1335 (3)0.61089 (17)0.74809 (18)0.0182 (4)
C80.4969 (4)0.56868 (18)1.0754 (2)0.0223 (5)
H8A0.52260.54191.02250.027*
C90.5457 (4)0.52623 (19)1.1623 (2)0.0235 (5)
H9A0.60040.47171.16750.028*
C100.5096 (4)0.56815 (17)1.23927 (19)0.0197 (5)
C110.4237 (4)0.64803 (17)1.23367 (19)0.0199 (5)
H11A0.40040.67461.28720.024*
C120.3726 (4)0.68801 (17)1.14587 (19)0.0184 (5)
C130.4121 (3)0.64894 (18)1.06542 (19)0.0193 (5)
C140.3656 (3)0.69000 (18)0.97047 (18)0.0194 (5)
C150.5526 (4)1.0118 (2)0.9896 (2)0.0254 (6)
C160.6210 (4)1.0937 (2)1.0165 (2)0.0267 (6)
H16A0.65171.10951.07950.032*
C170.6422 (4)1.15070 (18)0.94707 (19)0.0208 (5)
C180.5973 (4)1.12999 (18)0.8526 (2)0.0222 (5)
H18A0.61251.17030.80720.027*
C190.5287 (4)1.04701 (19)0.8275 (2)0.0239 (5)
C200.5060 (4)0.98790 (18)0.8952 (2)0.0217 (5)
C210.4268 (4)0.89879 (19)0.86537 (19)0.0205 (5)
C220.0576 (4)0.93515 (17)0.5342 (2)0.0224 (5)
H22A0.03030.96320.58600.027*
C230.0106 (4)0.97402 (17)0.4471 (2)0.0208 (5)
H23A0.04511.02830.43940.025*
C240.0497 (4)0.92867 (17)0.37110 (18)0.0190 (5)
C250.1356 (4)0.84924 (16)0.37889 (19)0.0197 (5)
H25A0.16000.82100.32650.024*
C260.1848 (4)0.81247 (17)0.46865 (18)0.0183 (5)
C270.1456 (3)0.85452 (17)0.54673 (18)0.0172 (4)
C280.1957 (4)0.81801 (16)0.64518 (18)0.0180 (4)
O1W0.6588 (3)0.69210 (14)0.73336 (14)0.0239 (4)
H1W10.62560.67950.67540.036*
H2W10.77160.68690.74820.036*
O2W0.0975 (3)0.81661 (13)0.88410 (14)0.0207 (4)
H1W20.12400.78390.92360.031*
H2W20.20890.82730.86760.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01168 (13)0.02709 (15)0.01187 (14)0.00096 (10)0.00296 (10)0.00209 (11)
Cu20.01168 (13)0.02907 (15)0.01193 (14)0.00102 (10)0.00297 (10)0.00302 (11)
Cl10.0377 (4)0.0294 (3)0.0179 (3)0.0038 (3)0.0042 (3)0.0002 (3)
Cl20.0288 (4)0.0221 (3)0.0180 (3)0.0003 (2)0.0059 (3)0.0009 (2)
Cl3A0.0666 (8)0.0300 (5)0.0146 (4)0.0177 (5)0.0059 (4)0.0024 (4)
Cl3B0.0266 (10)0.0296 (10)0.0077 (7)0.0037 (7)0.0005 (6)0.0008 (6)
Cl40.0340 (4)0.0204 (3)0.0189 (3)0.0019 (2)0.0048 (3)0.0025 (2)
O10.0162 (9)0.0313 (10)0.0243 (10)0.0004 (7)0.0089 (7)0.0065 (7)
O20.0155 (8)0.0259 (9)0.0214 (10)0.0022 (6)0.0050 (7)0.0006 (7)
O30.0174 (10)0.0350 (11)0.0181 (10)0.0051 (7)0.0061 (7)0.0018 (8)
O40.0164 (10)0.0409 (12)0.0156 (10)0.0049 (7)0.0037 (8)0.0009 (7)
O50.0152 (8)0.0335 (10)0.0250 (11)0.0023 (7)0.0049 (7)0.0111 (8)
O60.0140 (8)0.0286 (9)0.0221 (10)0.0005 (6)0.0033 (7)0.0064 (7)
O70.0197 (10)0.0294 (10)0.0129 (9)0.0013 (7)0.0048 (7)0.0006 (7)
O80.0142 (9)0.0408 (12)0.0142 (10)0.0030 (6)0.0007 (7)0.0011 (7)
O90.0290 (11)0.0311 (10)0.0216 (10)0.0008 (8)0.0063 (8)0.0050 (8)
O100.0419 (15)0.0304 (11)0.0262 (12)0.0101 (8)0.0089 (11)0.0022 (8)
O110.0216 (10)0.0359 (11)0.0266 (11)0.0012 (7)0.0028 (8)0.0083 (8)
O120.0580 (17)0.0405 (13)0.0205 (11)0.0081 (11)0.0190 (11)0.0083 (9)
O130.0337 (12)0.0340 (11)0.0215 (11)0.0052 (9)0.0077 (8)0.0077 (9)
O140.0453 (16)0.0361 (13)0.0281 (13)0.0081 (9)0.0153 (12)0.0046 (9)
O150.0242 (11)0.0353 (11)0.0231 (10)0.0008 (8)0.0009 (8)0.0066 (8)
O160.076 (2)0.0343 (12)0.0192 (11)0.0149 (12)0.0221 (12)0.0073 (9)
N10.0219 (11)0.0263 (11)0.0188 (11)0.0021 (7)0.0075 (9)0.0002 (8)
N20.0272 (13)0.0280 (11)0.0172 (11)0.0048 (8)0.0063 (9)0.0034 (9)
N30.0198 (12)0.0307 (11)0.0258 (13)0.0020 (8)0.0081 (10)0.0002 (10)
N40.0266 (12)0.0240 (11)0.0167 (10)0.0054 (8)0.0048 (9)0.0034 (8)
C10.0299 (14)0.0268 (12)0.0173 (13)0.0025 (9)0.0077 (10)0.0023 (9)
C20.0277 (13)0.0249 (12)0.0141 (11)0.0001 (9)0.0077 (9)0.0012 (9)
C30.0203 (12)0.0246 (12)0.0157 (11)0.0012 (8)0.0063 (9)0.0028 (9)
C40.0220 (12)0.0248 (12)0.0155 (12)0.0032 (9)0.0067 (9)0.0007 (9)
C50.0184 (11)0.0288 (12)0.0114 (11)0.0029 (8)0.0024 (8)0.0024 (9)
C60.0138 (10)0.0278 (12)0.0129 (11)0.0028 (8)0.0052 (8)0.0017 (8)
C70.0160 (11)0.0258 (12)0.0125 (11)0.0015 (8)0.0019 (8)0.0012 (8)
C80.0188 (12)0.0352 (14)0.0120 (11)0.0036 (9)0.0015 (8)0.0043 (10)
C90.0207 (13)0.0299 (13)0.0198 (13)0.0010 (9)0.0041 (10)0.0017 (10)
C100.0162 (11)0.0238 (12)0.0196 (13)0.0031 (8)0.0051 (9)0.0031 (9)
C110.0217 (13)0.0252 (12)0.0135 (11)0.0042 (9)0.0056 (9)0.0023 (9)
C120.0173 (11)0.0198 (11)0.0188 (13)0.0034 (8)0.0053 (9)0.0005 (9)
C130.0140 (11)0.0285 (12)0.0152 (12)0.0031 (8)0.0025 (9)0.0030 (9)
C140.0148 (11)0.0297 (12)0.0135 (11)0.0032 (8)0.0029 (8)0.0042 (9)
C150.0277 (14)0.0334 (14)0.0161 (13)0.0038 (10)0.0066 (10)0.0000 (10)
C160.0289 (14)0.0353 (14)0.0161 (13)0.0077 (10)0.0052 (10)0.0032 (10)
C170.0182 (12)0.0283 (12)0.0171 (12)0.0024 (8)0.0064 (9)0.0017 (9)
C180.0196 (12)0.0284 (13)0.0195 (13)0.0020 (9)0.0061 (10)0.0030 (10)
C190.0200 (12)0.0363 (14)0.0156 (12)0.0026 (10)0.0045 (9)0.0028 (10)
C200.0173 (11)0.0287 (13)0.0189 (13)0.0017 (8)0.0037 (9)0.0065 (10)
C210.0161 (11)0.0325 (13)0.0133 (11)0.0006 (9)0.0039 (9)0.0035 (9)
C220.0221 (13)0.0250 (12)0.0211 (13)0.0002 (9)0.0070 (10)0.0043 (10)
C230.0202 (12)0.0219 (12)0.0213 (13)0.0013 (8)0.0067 (10)0.0014 (9)
C240.0212 (13)0.0242 (12)0.0117 (11)0.0062 (9)0.0039 (9)0.0016 (9)
C250.0244 (13)0.0215 (11)0.0143 (12)0.0036 (9)0.0063 (10)0.0005 (9)
C260.0197 (12)0.0220 (11)0.0142 (12)0.0009 (8)0.0055 (9)0.0027 (8)
C270.0167 (12)0.0240 (11)0.0107 (10)0.0022 (8)0.0026 (8)0.0008 (8)
C280.0183 (12)0.0215 (11)0.0130 (11)0.0019 (8)0.0005 (9)0.0038 (8)
O1W0.0138 (9)0.0420 (11)0.0171 (9)0.0041 (7)0.0060 (7)0.0002 (8)
O2W0.0151 (9)0.0296 (10)0.0184 (9)0.0010 (6)0.0055 (7)0.0006 (7)
Geometric parameters (Å, º) top
Cu1—O71.953 (2)C2—H2A0.93
Cu1—O41.967 (2)C3—C41.397 (4)
Cu1—O51.971 (2)C4—C51.364 (4)
Cu1—O21.983 (2)C4—H4A0.93
Cu1—O2W2.159 (2)C5—C61.392 (4)
Cu1—Cu22.6458 (3)C6—C71.476 (4)
Cu2—O31.948 (2)C8—C131.382 (4)
Cu2—O81.964 (2)C8—C91.400 (4)
Cu2—O11.968 (2)C8—H8A0.93
Cu2—O61.987 (2)C9—C101.370 (4)
Cu2—O1W2.137 (2)C9—H9A0.93
Cl1—C51.728 (3)C10—C111.382 (4)
Cl2—C121.732 (3)C11—C121.396 (4)
Cl3A—C151.678 (3)C11—H11A0.93
Cl3B—C191.733 (3)C12—C131.405 (4)
Cl3B—H19A0.7759C13—C141.491 (4)
Cl4—C261.733 (3)C15—C161.382 (4)
O1—C71.263 (3)C15—C201.393 (4)
O2—C71.266 (3)C15—H15A0.97
O3—C141.277 (3)C16—C171.371 (4)
O4—C141.252 (3)C16—H16A0.93
O5—C211.247 (3)C17—C181.381 (4)
O6—C211.262 (3)C18—C191.392 (4)
O7—C281.257 (3)C18—H18A0.93
O8—C281.257 (3)C19—C201.376 (4)
O9—N11.228 (3)C19—H19A0.96
O10—N11.223 (3)C20—C211.518 (4)
O11—N21.225 (3)C22—C231.378 (4)
O12—N21.223 (3)C22—C271.399 (4)
O13—N31.232 (3)C22—H22A0.93
O14—N31.227 (4)C23—C241.393 (4)
O15—N41.224 (3)C23—H23A0.93
O16—N41.226 (3)C24—C251.375 (4)
N1—C31.462 (4)C25—C261.399 (4)
N2—C101.464 (4)C25—H25A0.93
N3—C171.476 (4)C26—C271.394 (4)
N4—C241.476 (4)C27—C281.510 (4)
C1—C21.399 (4)O1W—H1W10.85
C1—C61.407 (4)O1W—H2W10.85
C1—H1A0.93O2W—H1W20.82
C2—C31.401 (4)O2W—H2W20.85
O7—Cu1—O4167.90 (9)C13—C8—H8A118.8
O7—Cu1—O589.29 (9)C9—C8—H8A118.8
O4—Cu1—O590.90 (10)C10—C9—C8117.5 (3)
O7—Cu1—O288.53 (9)C10—C9—H9A121.3
O4—Cu1—O288.83 (9)C8—C9—H9A121.3
O5—Cu1—O2168.24 (8)C9—C10—C11122.8 (3)
O7—Cu1—O2W108.34 (8)C9—C10—N2119.9 (3)
O4—Cu1—O2W83.68 (8)C11—C10—N2117.2 (2)
O5—Cu1—O2W95.85 (8)C10—C11—C12118.6 (2)
O2—Cu1—O2W95.81 (8)C10—C11—H11A120.7
O7—Cu1—Cu285.71 (6)C12—C11—H11A120.7
O4—Cu1—Cu282.30 (7)C11—C12—C13120.6 (2)
O5—Cu1—Cu283.29 (6)C11—C12—Cl2116.5 (2)
O2—Cu1—Cu285.02 (6)C13—C12—Cl2122.8 (2)
O2W—Cu1—Cu2165.93 (6)C8—C13—C12118.1 (3)
O3—Cu2—O8168.65 (9)C8—C13—C14119.0 (2)
O3—Cu2—O188.80 (9)C12—C13—C14122.9 (2)
O8—Cu2—O190.62 (9)O4—C14—O3125.2 (3)
O3—Cu2—O690.01 (9)O4—C14—C13118.5 (2)
O8—Cu2—O688.28 (9)O3—C14—C13116.2 (2)
O1—Cu2—O6168.47 (8)C16—C15—C20121.2 (3)
O3—Cu2—O1W107.06 (8)C16—C15—Cl3A119.3 (2)
O8—Cu2—O1W84.29 (9)C20—C15—Cl3A119.4 (2)
O1—Cu2—O1W95.03 (8)C16—C15—H15A120.1
O6—Cu2—O1W96.28 (9)C20—C15—H15A118.6
O3—Cu2—Cu185.97 (6)C17—C16—C15117.7 (3)
O8—Cu2—Cu182.70 (7)C17—C16—H16A121.1
O1—Cu2—Cu183.46 (6)C15—C16—H16A121.1
O6—Cu2—Cu185.02 (6)C16—C17—C18123.0 (3)
O1W—Cu2—Cu1166.88 (6)C16—C17—N3119.1 (3)
C7—O1—Cu2124.26 (18)C18—C17—N3117.9 (3)
C7—O2—Cu1121.62 (18)C17—C18—C19118.1 (3)
C14—O3—Cu2121.26 (18)C17—C18—H18A121.0
C14—O4—Cu1125.22 (19)C19—C18—H18A121.0
C21—O5—Cu1124.00 (19)C20—C19—C18120.6 (3)
C21—O6—Cu2120.73 (18)C20—C19—Cl3B114.7 (2)
C28—O7—Cu1120.60 (18)C18—C19—Cl3B124.7 (2)
C28—O8—Cu2123.54 (19)C20—C19—H19A119.5
O10—N1—O9124.1 (3)C18—C19—H19A119.9
O10—N1—C3117.9 (3)C19—C20—C15119.3 (3)
O9—N1—C3118.0 (2)C19—C20—C21119.3 (2)
O12—N2—O11124.9 (3)C15—C20—C21121.4 (3)
O12—N2—C10117.2 (3)O5—C21—O6126.8 (3)
O11—N2—C10117.9 (2)O5—C21—C20115.8 (2)
O14—N3—O13123.4 (3)O6—C21—C20117.3 (2)
O14—N3—C17118.4 (3)C23—C22—C27121.6 (2)
O13—N3—C17118.2 (2)C23—C22—H22A119.2
O15—N4—O16123.4 (3)C27—C22—H22A119.2
O15—N4—C24118.9 (2)C22—C23—C24117.3 (2)
O16—N4—C24117.7 (3)C22—C23—H23A121.3
C2—C1—C6120.6 (3)C24—C23—H23A121.3
C2—C1—H1A119.7C25—C24—C23123.7 (3)
C6—C1—H1A119.7C25—C24—N4117.6 (2)
C1—C2—C3117.7 (3)C23—C24—N4118.7 (2)
C1—C2—H2A121.2C24—C25—C26117.5 (2)
C3—C2—H2A121.2C24—C25—H25A121.3
C4—C3—C2122.3 (3)C26—C25—H25A121.3
C4—C3—N1119.1 (2)C27—C26—C25121.0 (2)
C2—C3—N1118.6 (3)C27—C26—Cl4122.8 (2)
C5—C4—C3118.5 (2)C25—C26—Cl4116.18 (19)
C5—C4—H4A120.8C26—C27—C22118.9 (2)
C3—C4—H4A120.8C26—C27—C28123.3 (2)
C4—C5—C6122.0 (2)C22—C27—C28117.9 (2)
C4—C5—Cl1120.1 (2)O8—C28—O7127.2 (3)
C6—C5—Cl1117.9 (2)O8—C28—C27116.8 (2)
C5—C6—C1119.0 (2)O7—C28—C27116.0 (2)
C5—C6—C7120.7 (2)Cu2—O1W—H1W1110.7
C1—C6—C7120.3 (2)Cu2—O1W—H2W1141.6
O1—C7—O2125.6 (3)H1W1—O1W—H2W1107.7
O1—C7—C6116.1 (2)Cu1—O2W—H1W2118.7
O2—C7—C6118.2 (2)Cu1—O2W—H2W2140.4
C13—C8—C9122.4 (3)H1W2—O2W—H2W286.0
O7—Cu1—Cu2—O3177.67 (10)Cu1—O2—C7—O12.3 (4)
O4—Cu1—Cu2—O30.72 (9)Cu1—O2—C7—C6175.39 (18)
O5—Cu1—Cu2—O392.54 (9)C5—C6—C7—O1100.4 (3)
O2—Cu1—Cu2—O388.77 (9)C1—C6—C7—O178.2 (3)
O2W—Cu1—Cu2—O35.3 (2)C5—C6—C7—O277.5 (3)
O7—Cu1—Cu2—O83.06 (9)C1—C6—C7—O2103.9 (3)
O4—Cu1—Cu2—O8178.55 (11)C13—C8—C9—C101.4 (4)
O5—Cu1—Cu2—O886.72 (9)C8—C9—C10—C112.0 (4)
O2—Cu1—Cu2—O891.96 (9)C8—C9—C10—N2176.0 (2)
O2W—Cu1—Cu2—O8174.0 (2)O12—N2—C10—C9164.6 (3)
O7—Cu1—Cu2—O188.41 (8)O11—N2—C10—C915.0 (4)
O4—Cu1—Cu2—O189.98 (9)O12—N2—C10—C1117.3 (4)
O5—Cu1—Cu2—O1178.20 (11)O11—N2—C10—C11163.1 (2)
O2—Cu1—Cu2—O10.49 (8)C9—C10—C11—C120.4 (4)
O2W—Cu1—Cu2—O194.5 (2)N2—C10—C11—C12177.5 (2)
O7—Cu1—Cu2—O691.96 (8)C10—C11—C12—C131.7 (4)
O4—Cu1—Cu2—O689.64 (9)C10—C11—C12—Cl2179.3 (2)
O5—Cu1—Cu2—O62.18 (9)C9—C8—C13—C120.7 (4)
O2—Cu1—Cu2—O6179.14 (10)C9—C8—C13—C14179.7 (3)
O2W—Cu1—Cu2—O685.1 (2)C11—C12—C13—C82.2 (4)
O7—Cu1—Cu2—O1W4.3 (3)Cl2—C12—C13—C8179.7 (2)
O4—Cu1—Cu2—O1W174.1 (3)C11—C12—C13—C14178.1 (2)
O5—Cu1—Cu2—O1W94.1 (3)Cl2—C12—C13—C140.7 (4)
O2—Cu1—Cu2—O1W84.6 (3)Cu1—O4—C14—O30.8 (4)
O2W—Cu1—Cu2—O1W178.6 (4)Cu1—O4—C14—C13177.66 (18)
O3—Cu2—O1—C784.2 (2)Cu2—O3—C14—O41.8 (4)
O8—Cu2—O1—C784.4 (2)Cu2—O3—C14—C13178.69 (17)
O6—Cu2—O1—C70.0 (6)C8—C13—C14—O4140.1 (3)
O1W—Cu2—O1—C7168.7 (2)C12—C13—C14—O439.6 (4)
Cu1—Cu2—O1—C71.8 (2)C8—C13—C14—O337.0 (4)
O7—Cu1—O2—C786.5 (2)C12—C13—C14—O3143.3 (3)
O4—Cu1—O2—C781.7 (2)C20—C15—C16—C170.2 (5)
O5—Cu1—O2—C77.1 (6)Cl3A—C15—C16—C17177.9 (2)
O2W—Cu1—O2—C7165.3 (2)C15—C16—C17—C180.4 (5)
Cu2—Cu1—O2—C70.6 (2)C15—C16—C17—N3177.6 (3)
O8—Cu2—O3—C142.2 (6)O14—N3—C17—C16172.8 (3)
O1—Cu2—O3—C1485.0 (2)O13—N3—C17—C165.9 (4)
O6—Cu2—O3—C1483.6 (2)O14—N3—C17—C185.3 (4)
O1W—Cu2—O3—C14179.9 (2)O13—N3—C17—C18175.9 (3)
Cu1—Cu2—O3—C141.5 (2)C16—C17—C18—C190.5 (4)
O7—Cu1—O4—C147.4 (6)N3—C17—C18—C19177.6 (2)
O5—Cu1—O4—C1483.3 (2)C17—C18—C19—C200.3 (4)
O2—Cu1—O4—C1484.9 (2)C17—C18—C19—Cl3B179.0 (2)
O2W—Cu1—O4—C14179.1 (2)C18—C19—C20—C150.1 (4)
Cu2—Cu1—O4—C140.2 (2)Cl3B—C19—C20—C15178.9 (2)
O7—Cu1—O5—C2187.4 (2)C18—C19—C20—C21178.5 (3)
O4—Cu1—O5—C2180.5 (2)Cl3B—C19—C20—C210.3 (4)
O2—Cu1—O5—C218.0 (6)C16—C15—C20—C190.0 (5)
O2W—Cu1—O5—C21164.3 (2)Cl3A—C15—C20—C19177.8 (2)
Cu2—Cu1—O5—C211.6 (2)C16—C15—C20—C21178.5 (3)
O3—Cu2—O6—C2189.5 (2)Cl3A—C15—C20—C210.8 (4)
O8—Cu2—O6—C2179.3 (2)Cu1—O5—C21—O60.7 (4)
O1—Cu2—O6—C215.4 (6)Cu1—O5—C21—C20177.50 (19)
O1W—Cu2—O6—C21163.3 (2)Cu2—O6—C21—O53.7 (4)
Cu1—Cu2—O6—C213.6 (2)Cu2—O6—C21—C20174.52 (18)
O4—Cu1—O7—C2810.3 (5)C19—C20—C21—O599.2 (3)
O5—Cu1—O7—C2880.7 (2)C15—C20—C21—O579.4 (4)
O2—Cu1—O7—C2887.7 (2)C19—C20—C21—O679.2 (4)
O2W—Cu1—O7—C28176.62 (19)C15—C20—C21—O6102.2 (3)
Cu2—Cu1—O7—C282.63 (19)C27—C22—C23—C241.7 (4)
O3—Cu2—O8—C288.3 (6)C22—C23—C24—C251.6 (4)
O1—Cu2—O8—C2878.7 (2)C22—C23—C24—N4177.4 (2)
O6—Cu2—O8—C2889.8 (2)O15—N4—C24—C25159.1 (3)
O1W—Cu2—O8—C28173.7 (2)O16—N4—C24—C2520.0 (4)
Cu1—Cu2—O8—C284.6 (2)O15—N4—C24—C2320.0 (4)
C6—C1—C2—C30.7 (4)O16—N4—C24—C23160.9 (3)
C1—C2—C3—C40.3 (4)C23—C24—C25—C260.3 (4)
C1—C2—C3—N1177.6 (3)N4—C24—C25—C26178.6 (2)
O10—N1—C3—C45.1 (4)C24—C25—C26—C270.9 (4)
O9—N1—C3—C4176.1 (3)C24—C25—C26—Cl4178.0 (2)
O10—N1—C3—C2172.9 (3)C25—C26—C27—C220.8 (4)
O9—N1—C3—C25.9 (4)Cl4—C26—C27—C22177.7 (2)
C2—C3—C4—C50.3 (4)C25—C26—C27—C28179.9 (2)
N1—C3—C4—C5178.2 (3)Cl4—C26—C27—C283.2 (4)
C3—C4—C5—C60.5 (4)C23—C22—C27—C260.6 (4)
C3—C4—C5—Cl1179.2 (2)C23—C22—C27—C28178.6 (2)
C4—C5—C6—C10.1 (4)Cu2—O8—C28—O74.3 (4)
Cl1—C5—C6—C1179.6 (2)Cu2—O8—C28—C27176.45 (17)
C4—C5—C6—C7178.7 (3)Cu1—O7—C28—O80.1 (4)
Cl1—C5—C6—C71.0 (3)Cu1—O7—C28—C27179.27 (16)
C2—C1—C6—C50.5 (4)C26—C27—C28—O841.5 (4)
C2—C1—C6—C7178.1 (3)C22—C27—C28—O8137.6 (3)
Cu2—O1—C7—O23.1 (4)C26—C27—C28—O7139.2 (3)
Cu2—O1—C7—C6174.68 (17)C22—C27—C28—O741.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O13i0.852.352.910 (3)124
O1W—H2W1···O2ii0.851.992.838 (3)175
O2W—H1W2···O9iii0.822.152.927 (3)158
O2W—H2W2···O6iv0.851.982.826 (3)173
C1—H1A···Cl1v0.932.783.417 (3)127
C4—H4A···O14vi0.932.513.331 (4)147
C8—H8A···O12v0.932.383.269 (4)159
C18—H18A···O10vii0.932.553.364 (4)147
C22—H22A···O16viii0.932.363.240 (4)158
C23—H23A···O2Wi0.932.513.385 (3)157
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1, y, z; (iii) x, y+1, z+1/2; (iv) x1, y, z; (v) x, y+1, z1/2; (vi) x1, y1, z; (vii) x+1, y+1, z; (viii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3ClNO4)4(H2O)2]
Mr965.33
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)7.6721 (2), 15.2938 (4), 14.5653 (3)
β (°) 102.327 (1)
V3)1669.63 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.76 × 0.19 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.360, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
61401, 18745, 13379
Rint0.041
(sin θ/λ)max1)0.913
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.11
No. of reflections18745
No. of parameters516
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 0.85
Absolute structureFlack (1983), 8242 Friedel pairs
Absolute structure parameter0.526 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—O71.953 (2)Cu2—O31.948 (2)
Cu1—O41.967 (2)Cu2—O81.964 (2)
Cu1—O51.971 (2)Cu2—O11.968 (2)
Cu1—O21.983 (2)Cu2—O61.987 (2)
Cu1—O2W2.159 (2)Cu2—O1W2.137 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O13i0.852.352.910 (3)124
O1W—H2W1···O2ii0.851.992.838 (3)175
O2W—H1W2···O9iii0.822.152.927 (3)158
O2W—H2W2···O6iv0.851.982.826 (3)173
C1—H1A···Cl1v0.932.783.417 (3)127
C4—H4A···O14vi0.932.513.331 (4)147
C8—H8A···O12v0.932.383.269 (4)159
C18—H18A···O10vii0.932.553.364 (4)147
C22—H22A···O16viii0.932.363.240 (4)158
C23—H23A···O2Wi0.932.513.385 (3)157
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1, y, z; (iii) x, y+1, z+1/2; (iv) x1, y, z; (v) x, y+1, z1/2; (vi) x1, y1, z; (vii) x+1, y+1, z; (viii) x, y+2, z+1/2.
 

Footnotes

On sabbatical leave at Universiti Sains Malaysia.

§Permanent address : Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBalaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 11, 749–756.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m82-m83
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds