supplementary materials


Acta Cryst. (2009). E65, o85    [ doi:10.1107/S1600536808041378 ]

3-Bromo-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide

C.-G. Zhu, Y.-J. Wei and Q.-Y. Zhu

Abstract top

The title compound, C14H9BrCl2N2O2, was prepared by the reaction of 3,5-dichloro-2-hydroxybenzaldehyde and 3-bromobenzohydrazide in methanol. The dihedral angle between the two benzene rings is 13.0 (2)°. An intramolecular O-H...N hydrogen bond is observed. The molecules are linked into chains along the c axis by intermolecular N-H...O hydrogen bonds.

Comment top

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Akitsu & Einaga, 2006; Pradeep, 2005; Butcher et al., 2005; Habibi et al., 2007). We have reported a few Schiff bases and their complexes (Wei et al., 2008; Zhu et al., 2007; Wang et al., 2006). In this paper, the crystal structure of a new Schiff base compound is reported.

The CN bond length in the title molecule (Fig.1) is comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). All bond lengths are within normal ranges and are comparable to those observed in a related compound (Bao & Wei, 2008). The dihedral angle between C1—C6 and C9—C14 phenyl rings is 13.0 (2)°, indicating that the molecule is non-planar. An intramolecular O1—H1···N1 hydrogen bond is observed.

The crystal structure is stabilized by intermolecular N–H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

Related literature top

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006); Butcher et al. (2005); Habibi et al. (2007); Pradeep (2005). For related structures, see: Bao & Wei (2008); Odabaşoğlu et al. (2007); Wang et al. (2006); Wei et al. (2008); Yathirajan et al. (2007); Yehye et al. (2008); Zhu et al. (2007).

Experimental top

3,5-Dichloro-2-hydroxybenzaldehyde (1.0 mmol) and 3-bromobenzohydrazide (1.0 mmol) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping this solution in air for 5 d, colourless needle-shaped crystals were formed.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically (C–H = 0.93 Å and O–H = 0.82 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Bromo-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H9BrCl2N2O2F(000) = 768
Mr = 388.04Dx = 1.743 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1779 reflections
a = 8.272 (2) Åθ = 2.5–24.9°
b = 22.366 (3) ŵ = 3.15 mm1
c = 8.237 (2) ÅT = 298 K
β = 104.014 (2)°Cut from needle, colorless
V = 1478.6 (5) Å30.23 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3224 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.495, Tmax = 0.513k = 2528
8590 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
3224 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C14H9BrCl2N2O2V = 1478.6 (5) Å3
Mr = 388.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.272 (2) ŵ = 3.15 mm1
b = 22.366 (3) ÅT = 298 K
c = 8.237 (2) Å0.23 × 0.23 × 0.22 mm
β = 104.014 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2144 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.513Rint = 0.035
8590 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.32 e Å3
S = 0.98Δρmin = 0.29 e Å3
3224 reflectionsAbsolute structure: ?
194 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.48270 (4)0.491887 (13)0.27385 (4)0.05628 (13)
Cl11.05566 (10)1.05415 (3)0.26163 (9)0.0498 (2)
Cl21.25693 (10)0.85535 (3)0.61875 (9)0.0575 (2)
N10.7849 (3)0.79256 (10)0.0814 (3)0.0410 (6)
N20.6808 (3)0.76119 (10)0.0450 (3)0.0422 (6)
O11.0195 (3)0.79478 (8)0.3556 (2)0.0541 (5)
H10.94620.77930.28270.081*
O20.6767 (3)0.68457 (8)0.1345 (2)0.0489 (5)
C10.9228 (3)0.88201 (12)0.1849 (3)0.0367 (6)
C21.0236 (3)0.85387 (12)0.3269 (3)0.0395 (7)
C31.1329 (3)0.88909 (12)0.4431 (3)0.0397 (7)
C41.1435 (3)0.94963 (12)0.4228 (3)0.0409 (7)
H41.21830.97220.50170.049*
C51.0430 (3)0.97700 (11)0.2850 (3)0.0373 (7)
C60.9340 (3)0.94382 (12)0.1660 (3)0.0387 (7)
H60.86760.96260.07260.046*
C70.8091 (3)0.84757 (12)0.0558 (3)0.0417 (7)
H70.75480.86560.04420.050*
C80.6373 (3)0.70501 (12)0.0078 (3)0.0392 (7)
C90.5343 (3)0.67109 (12)0.1518 (3)0.0373 (6)
C100.5519 (3)0.60935 (11)0.1486 (3)0.0371 (6)
H100.62480.59060.05950.044*
C110.4591 (3)0.57631 (12)0.2802 (3)0.0404 (7)
C120.3488 (4)0.60312 (13)0.4123 (3)0.0468 (7)
H120.28770.58010.50000.056*
C130.3297 (4)0.66421 (13)0.4133 (4)0.0500 (8)
H130.25440.68260.50130.060*
C140.4222 (4)0.69829 (13)0.2838 (3)0.0444 (7)
H140.40930.73960.28520.053*
H20.662 (4)0.7733 (13)0.1513 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0667 (2)0.04067 (18)0.0550 (2)0.00069 (16)0.00200 (16)0.00918 (15)
Cl10.0677 (6)0.0367 (4)0.0459 (4)0.0006 (3)0.0154 (4)0.0005 (3)
Cl20.0656 (6)0.0545 (5)0.0430 (4)0.0122 (4)0.0048 (4)0.0070 (4)
N10.0484 (15)0.0403 (14)0.0325 (13)0.0066 (11)0.0066 (11)0.0035 (11)
N20.0558 (16)0.0401 (13)0.0280 (12)0.0083 (12)0.0053 (12)0.0038 (11)
O10.0718 (17)0.0375 (11)0.0463 (13)0.0037 (10)0.0013 (11)0.0071 (10)
O20.0714 (15)0.0428 (11)0.0283 (11)0.0042 (10)0.0042 (10)0.0001 (9)
C10.0396 (16)0.0403 (16)0.0311 (14)0.0024 (13)0.0103 (12)0.0019 (13)
C20.0462 (18)0.0379 (16)0.0361 (16)0.0023 (13)0.0130 (14)0.0055 (13)
C30.0410 (17)0.0448 (17)0.0311 (15)0.0044 (14)0.0047 (13)0.0022 (13)
C40.0429 (18)0.0442 (17)0.0335 (15)0.0037 (14)0.0050 (13)0.0038 (13)
C50.0457 (19)0.0329 (15)0.0346 (15)0.0011 (12)0.0119 (14)0.0007 (12)
C60.0467 (18)0.0403 (16)0.0295 (14)0.0050 (14)0.0100 (13)0.0049 (13)
C70.0463 (19)0.0455 (18)0.0324 (15)0.0037 (14)0.0076 (13)0.0004 (13)
C80.0462 (18)0.0393 (16)0.0317 (16)0.0023 (13)0.0085 (13)0.0041 (13)
C90.0430 (18)0.0408 (16)0.0280 (14)0.0024 (13)0.0085 (13)0.0018 (13)
C100.0418 (17)0.0370 (15)0.0302 (15)0.0013 (13)0.0044 (12)0.0003 (12)
C110.0399 (18)0.0410 (16)0.0404 (17)0.0012 (13)0.0098 (14)0.0043 (14)
C120.0464 (19)0.0520 (19)0.0375 (17)0.0042 (15)0.0016 (14)0.0060 (14)
C130.0449 (19)0.056 (2)0.0424 (18)0.0007 (15)0.0023 (14)0.0041 (15)
C140.0495 (19)0.0385 (16)0.0440 (17)0.0040 (14)0.0094 (15)0.0053 (14)
Geometric parameters (Å, °) top
Br1—C111.898 (3)C4—H40.93
Cl1—C51.742 (3)C5—C61.377 (4)
Cl2—C31.731 (3)C6—H60.93
N1—C71.272 (3)C7—H70.93
N1—N21.372 (3)C8—C91.490 (4)
N2—C81.362 (3)C9—C141.387 (4)
N2—H20.893 (10)C9—C101.388 (3)
O1—C21.345 (3)C10—C111.381 (4)
O1—H10.82C10—H100.93
O2—C81.227 (3)C11—C121.377 (4)
C1—C61.397 (4)C12—C131.375 (4)
C1—C21.410 (4)C12—H120.93
C1—C71.458 (4)C13—C141.381 (4)
C2—C31.391 (4)C13—H130.93
C3—C41.370 (3)C14—H140.93
C4—C51.377 (4)
C7—N1—N2117.7 (2)N1—C7—H7120.3
C8—N2—N1116.9 (2)C1—C7—H7120.3
C8—N2—H2120 (2)O2—C8—N2122.4 (2)
N1—N2—H2121 (2)O2—C8—C9122.6 (2)
C2—O1—H1109.5N2—C8—C9115.0 (2)
C6—C1—C2119.5 (3)C14—C9—C10119.9 (3)
C6—C1—C7119.3 (3)C14—C9—C8123.1 (2)
C2—C1—C7121.1 (2)C10—C9—C8117.0 (2)
O1—C2—C3118.4 (2)C11—C10—C9118.8 (3)
O1—C2—C1123.3 (3)C11—C10—H10120.6
C3—C2—C1118.3 (2)C9—C10—H10120.6
C4—C3—C2121.7 (3)C12—C11—C10121.6 (3)
C4—C3—Cl2119.4 (2)C12—C11—Br1119.9 (2)
C2—C3—Cl2118.9 (2)C10—C11—Br1118.5 (2)
C3—C4—C5119.8 (3)C13—C12—C11119.4 (3)
C3—C4—H4120.1C13—C12—H12120.3
C5—C4—H4120.1C11—C12—H12120.3
C4—C5—C6120.5 (3)C12—C13—C14120.2 (3)
C4—C5—Cl1119.4 (2)C12—C13—H13119.9
C6—C5—Cl1120.1 (2)C14—C13—H13119.9
C5—C6—C1120.2 (3)C13—C14—C9120.2 (3)
C5—C6—H6119.9C13—C14—H14119.9
C1—C6—H6119.9C9—C14—H14119.9
N1—C7—C1119.4 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.598 (3)145
N2—H2···O2i0.89 (1)2.03 (1)2.898 (3)165 (3)
Symmetry codes: (i) x, −y+3/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.598 (3)145
N2—H2···O2i0.89 (1)2.03 (1)2.898 (3)165 (3)
Symmetry codes: (i) x, −y+3/2, z−1/2.
Acknowledgements top

The authors thank the Natural Science Foundation of the Education Office of Anhui Province, China, for financial support (grant No. KJ2007A126ZC).

references
References top

Akitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315–o4317.

Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.

Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.

Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.

Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179–1182.

Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem. 33, 543–546.

Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.

Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.

Zhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197–m3198.