organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-4-nitro­phenyl acetate

aSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China, bSchool of Pharmacy, Jiangxi Science and Technology, Normal University, Jiangxi 330013, People's Republic of China, and cTianjin Municipal Key Laboratory of Fiber Modification and Functional Fibers, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: liuchao_tj@yahoo.com, jxjchem@yahoo.com

(Received 21 November 2008; accepted 4 December 2008; online 10 December 2008)

In the mol­ecule of the title compound, C8H7NO5, the acetate group is oriented with respect to the aromatic ring at a dihedral angle of 85.30 (3)°. An intra­molecular O—H⋯O hydrogen bond results in the formation of a non-planar six-membered ring, adopting an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background to phenolic esters as inter­mediates in organic synthesis, see: Trollsås et al. (1996[Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542-8548.]); Svensson et al. (1998[Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353-362.]); Atkinson et al. (2005[Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737-741.]); Hu et al. (2001[Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757-760.]). For a related structure, see: Ji et al. (2006[Ji, X. & Li, C. (2006). Synthesis, 15, 2478-2482.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO5

  • Mr = 197.15

  • Monoclinic, P 21 /n

  • a = 10.881 (2) Å

  • b = 5.0543 (10) Å

  • c = 15.318 (3) Å

  • β = 93.75 (3)°

  • V = 840.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 153 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.979

  • 5058 measured reflections

  • 1449 independent reflections

  • 1232 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.083

  • S = 1.12

  • 1449 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.91 2.605 (2) 142
C5—H5⋯O1i 0.93 2.58 3.229 (2) 127
C8—H8⋯O3ii 0.93 2.56 3.481 (2) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenolic esters are useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have developed a new method for the syntheses of some phenolic esters (Ji et al., 2006). The title compound is one of the products, and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. The acetate group is oriented with respect to the aromatic ring at a dihedral angle of 85.30 (3)°. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a nonplanar six-membered ring (N1/O3/O4/C6/C7/H3), adopting envelope conformation.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to phenolic esters as intermediates in organic synthesis, see: Trollsås et al. (1996); Svensson et al. (1998); Atkinson et al. (2005); Hu et al. (2001). For a related structure, see: Ji et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-nitroresorcin acetate (239 mg, 1.0 mmol) was dissolved in chloroform (20 ml). At 273-278 K, anhydrous AlCl3 (133.5 mg, 1 mmol) was added to this solution, the reaction was stirred at room temperature for 1 h, and then hydrochloric acid (5 ml, 10%) was added. The reaction mixture was extracted with chloroform and dried with anhydrous sodium sulfate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield; 144 mg, 73%, m.p. 360 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3253, 3083, 2946, 1758, 1530, 1204, 1138, 978, 847. Analysis required for C8H7NO5: C 48.74; H 3.58; N 7.10%. Found: C 48.80; H 3.61; N 7.08%.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as ashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3-Hydroxy-4-nitrophenyl acetate top
Crystal data top
C8H7NO5F(000) = 408
Mr = 197.15Dx = 1.558 Mg m3
Monoclinic, P21/nMelting point: 360 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.881 (2) ÅCell parameters from 2650 reflections
b = 5.0543 (10) Åθ = 2.2–27.5°
c = 15.318 (3) ŵ = 0.13 mm1
β = 93.75 (3)°T = 153 K
V = 840.6 (3) Å3Block, colorless
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Bruker P4
diffractometer
1449 independent reflections
Radiation source: fine-focus sealed tube1232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.969, Tmax = 0.979k = 65
5058 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1223P]
where P = (Fo2 + 2Fc2)/3
1449 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H7NO5V = 840.6 (3) Å3
Mr = 197.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.881 (2) ŵ = 0.13 mm1
b = 5.0543 (10) ÅT = 153 K
c = 15.318 (3) Å0.24 × 0.20 × 0.16 mm
β = 93.75 (3)°
Data collection top
Bruker P4
diffractometer
1449 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1232 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.027
5058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
1449 reflectionsΔρmin = 0.20 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14195 (8)0.58036 (19)0.89666 (6)0.0279 (3)
O20.31702 (7)0.35401 (18)0.93249 (5)0.0244 (3)
O30.59843 (8)1.04495 (18)0.88687 (5)0.0223 (2)
H30.63501.11920.84860.033*
O40.67226 (8)1.08418 (17)0.72904 (5)0.0230 (2)
O50.63078 (8)0.77288 (18)0.63478 (5)0.0247 (2)
N10.61633 (9)0.8778 (2)0.70551 (6)0.0179 (3)
C10.13908 (11)0.2225 (3)1.00085 (8)0.0213 (3)
H1A0.05320.26201.00410.032*
H1B0.18070.24251.05770.032*
H1C0.14820.04380.98100.032*
C20.19373 (11)0.4079 (2)0.93821 (7)0.0179 (3)
C30.38267 (10)0.5030 (3)0.87381 (8)0.0195 (3)
C40.38272 (11)0.4184 (3)0.78716 (8)0.0207 (3)
H40.33230.28040.76660.025*
C50.46001 (11)0.5463 (2)0.73292 (8)0.0194 (3)
H50.46330.49190.67510.023*
C60.53337 (10)0.7573 (2)0.76450 (7)0.0164 (3)
C70.53043 (10)0.8455 (2)0.85126 (7)0.0168 (3)
C80.45238 (10)0.7116 (2)0.90598 (7)0.0189 (3)
H80.44800.76430.96390.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (5)0.0277 (6)0.0342 (5)0.0061 (4)0.0054 (4)0.0129 (4)
O20.0180 (5)0.0266 (5)0.0290 (5)0.0010 (4)0.0041 (3)0.0131 (4)
O30.0269 (5)0.0225 (5)0.0177 (4)0.0062 (4)0.0019 (4)0.0023 (3)
O40.0233 (5)0.0224 (5)0.0232 (5)0.0057 (4)0.0018 (3)0.0005 (4)
O50.0302 (5)0.0282 (5)0.0164 (4)0.0030 (4)0.0064 (4)0.0034 (4)
N10.0165 (5)0.0200 (6)0.0171 (5)0.0032 (4)0.0004 (4)0.0005 (4)
C10.0219 (6)0.0208 (7)0.0216 (6)0.0008 (5)0.0033 (5)0.0030 (5)
C20.0176 (6)0.0169 (6)0.0190 (6)0.0003 (5)0.0003 (5)0.0026 (5)
C30.0143 (6)0.0208 (7)0.0235 (6)0.0042 (5)0.0021 (5)0.0071 (5)
C40.0177 (6)0.0182 (7)0.0255 (7)0.0008 (5)0.0033 (5)0.0010 (5)
C50.0204 (6)0.0191 (7)0.0180 (6)0.0029 (5)0.0022 (5)0.0012 (5)
C60.0150 (6)0.0177 (6)0.0166 (6)0.0033 (5)0.0012 (4)0.0018 (4)
C70.0162 (6)0.0158 (6)0.0182 (6)0.0035 (5)0.0016 (4)0.0003 (5)
C80.0197 (6)0.0211 (7)0.0159 (6)0.0043 (5)0.0022 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C21.1982 (15)C1—H1C0.9600
O2—C21.3773 (15)C3—C81.3716 (18)
O2—C31.4032 (14)C3—C41.3944 (17)
O3—C71.3447 (15)C4—C51.3807 (17)
O3—H30.8200C4—H40.9300
O4—N11.2489 (13)C5—C61.3994 (17)
O5—N11.2255 (12)C5—H50.9300
N1—C61.4521 (15)C6—C71.4041 (16)
C1—C21.4923 (16)C7—C81.4054 (17)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600
C2—O2—C3118.26 (9)C4—C3—O2118.51 (11)
C7—O3—H3109.5C5—C4—C3117.87 (12)
O5—N1—O4121.88 (10)C5—C4—H4121.1
O5—N1—C6119.32 (10)C3—C4—H4121.1
O4—N1—C6118.79 (9)C4—C5—C6120.33 (11)
C2—C1—H1A109.5C4—C5—H5119.8
C2—C1—H1B109.5C6—C5—H5119.8
H1A—C1—H1B109.5C5—C6—C7121.42 (11)
C2—C1—H1C109.5C5—C6—N1117.92 (10)
H1A—C1—H1C109.5C7—C6—N1120.63 (11)
H1B—C1—H1C109.5O3—C7—C6125.16 (10)
O1—C2—O2122.43 (11)O3—C7—C8117.20 (10)
O1—C2—C1127.24 (11)C6—C7—C8117.62 (11)
O2—C2—C1110.33 (10)C3—C8—C7119.85 (11)
C8—C3—C4122.88 (11)C3—C8—H8120.1
C8—C3—O2118.37 (10)C7—C8—H8120.1
C3—O2—C2—O11.83 (17)O5—N1—C6—C7169.13 (10)
C3—O2—C2—C1177.59 (10)O4—N1—C6—C79.92 (16)
C2—O2—C3—C898.78 (13)C5—C6—C7—O3179.46 (10)
C2—O2—C3—C486.75 (14)N1—C6—C7—O31.57 (18)
C8—C3—C4—C52.32 (18)C5—C6—C7—C80.95 (17)
O2—C3—C4—C5171.88 (10)N1—C6—C7—C8176.94 (10)
C3—C4—C5—C61.34 (18)C4—C3—C8—C71.64 (18)
C4—C5—C6—C70.25 (18)O2—C3—C8—C7172.57 (10)
C4—C5—C6—N1177.70 (10)O3—C7—C8—C3178.67 (10)
O5—N1—C6—C58.83 (15)C6—C7—C8—C30.03 (17)
O4—N1—C6—C5172.12 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.912.605 (2)142
C5—H5···O1i0.932.583.229 (2)127
C8—H8···O3ii0.932.563.481 (2)170
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC8H7NO5
Mr197.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)10.881 (2), 5.0543 (10), 15.318 (3)
β (°) 93.75 (3)
V3)840.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5058, 1449, 1232
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.083, 1.12
No. of reflections1449
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.912.605 (2)142
C5—H5···O1i0.932.583.229 (2)127
C8—H8···O3ii0.932.563.481 (2)170
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+2, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, X. & Li, C. (2006). Synthesis, 15, 2478–2482.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353–362.  Web of Science CrossRef CAS Google Scholar
First citationTrollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542–8548.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds