metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[copper(I)-bis­(μ-tri­fluoro­methane­sulfonato-κ2O:O′)-copper(I)-bis­(μ-tri­methyl tri­thio­phosphite)-κ2P:S;κ2S:P]

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: hgr@sun.ac.za

(Received 5 December 2008; accepted 9 December 2008; online 17 December 2008)

The title compound, [Cu2(CF3SO3)2(C3H9PS3)2]n, crystallizes as infinite chains in which two trimethyl trithio­phosphite ligands and two trifluoro­methane­sulfonate anions bridge the essentially tetra­hedrally coordinated CuI ions in an alternating fashion. The P and one S atom of each trimethyl trithio­phosphite ligand are employed for coordination. The mol­ecular structure exhibits the rare motif of copper(I) bridged by two trifluoro­methane­sulfonate anions generating eight-membered rings.

Related literature

For related structures, see: Blue et al. (2006[Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988-5993.]); Kataeva et al. (1995[Kataeva, O. N., Litvinov, I. A., Naumov, V. A., Kursheva, L. I. & Batyeva, E. S. (1995). Inorg. Chem. 34, 5171-5174.], 2000[Kataeva, O. N., Krivolapov, D. B., Gubaidullin, A. T., Litvinov, I. A., Kursheva, L. I. & Katsyuba, S. A. (2000). J. Mol. Struct. 554, 127-140.]); Knight & Keller (2006[Knight, D. A. & Keller, S. W. (2006). J. Chem. Crystallogr. 36, 531-542.]); Kursheva et al. (2003[Kursheva, L. I., Kataeva, O. N., Gubaidullin, A. T., Khasyanzyanova, F. S., Vakhitov, E. V., Krivolapov, D. B. & Batyeva, E. S. (2003). Russ. J. Gen. Chem. 73, 1516-1521.]); Stibrany & Potenza (2007[Stibrany, R. T. & Potenza, J. A. (2007). Private communication (Refcode: VIFSEJ). CCDC, Cambridge, England.]); Stibrany et al. (2006[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2006). Private communication (Refcode: CEJGEE). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CF3SO3)2(C3H9PS3)2]

  • Mr = 769.78

  • Monoclinic, P 21 /c

  • a = 8.8347 (15) Å

  • b = 18.306 (3) Å

  • c = 8.1731 (14) Å

  • β = 102.674 (3)°

  • V = 1289.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 100 (2) K

  • 0.10 × 0.08 × 0.04 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.907

  • 7349 measured reflections

  • 2612 independent reflections

  • 2425 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.04

  • 2612 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—S1i 2.2943 (8)
Cu1—P1 2.1895 (7)
Cu1—O1 2.1466 (18)
Cu1—O2ii 2.065 (2)
P1—Cu1—S1i 121.88 (3)
O1—Cu1—S1i 105.35 (5)
O1—Cu1—P1 104.59 (6)
O2ii—Cu1—S1i 102.03 (7)
O2ii—Cu1—P1 123.32 (7)
O2ii—Cu1—O1 95.18 (8)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The structure of the title compound (I), consists of chains of tetrahedrally coordinated CuI centres that are bridged by two P(SMe)3 ligands in a κ2P:S-fashion, forming 6-membered rings in the chair conformation. Two trifluoromethanesulfonate anions each employ two oxygen atoms to bridge two copper atoms, yielding 8-membered rings. The copper atoms thus form spiro-junctions between the alternating 6- and 8-membered rings generated by the trithiophosphite and trifluoromethanesulfonate ligands; a point of symmetry is located in the centre of each ring.

The crystal structure of (I) therefore is related to compounds of the [CuX{P(SR)3}]n (R = alkyl, phenyl; X = Cl, Br, I, SCN) type which also show the same arrangement of 6-membered rings formed by two trithiophosphite ligands where the copper centres also form spiro-junctions to the 4-membered (8-membered) rings generated by two bridging (pseudo)halide (thiocyanate) anions (Kataeva et al., 1995; Kataeva et al., 2000). Cu—P and Cu—S bond lengths in (I) are shorter than in most halide analogues. This difference might be caused by the harder and more electron-withdrawing nature of the trifluoromethanesulfonate counter-anion. The average Cu—P bond length in the halide complexes is 2.22 Å and the average Cu—S distance 2.39 Å. An exception is the cluster formed by triisopropyltrithiophosphite with 4 CuCl units [Cu—P 2.207 (7) Å, Cu—S 2.185 (8) Å] that also might exert a similar electron-withdrawing effect on the ligand (Kursheva et al., 2003).

Tetrahydrofuran (thf), from which (I) was crystallized, does not act as a ligand towards CuI in the present structure. This behaviour of (I) is in contrast to the complex [Cu(CH3CN)2(PPh3)2]CF3SO3 which spontaneously yields crystals of [Cu(CF3SO3)(PPh3)2(thf)] when dissolved in thf (Knight & Keller, 2006). In the latter complex, the Cu—O(thf) bond is shorter [2.125 (2) Å] than the Cu—O(CF3SO3) bond [2.168 (2) Å] in (I).

Two copper centres bridged by two trifluoromethanesulfonate anions, each employing two oxygen atoms for coordination, is a very rare motif. Only two other structures of CuI (Stibrany et al., 2006; Stibrany & Potenza, 2007) and one of CuII (Blue et al., 2006) are known that exhibit such an arrangement. The former examples comprise tetrahedral CuI centres with the remaining sites occupied by phosphine or imine donors where the Cu—O distances of the former structure [2.111 (4) and 2.189 (4) Å] are comparable to those in (I) whereas such bonds are longer [2.336 (6) and 2.350 (7) Å] in the latter structure.

Related literature top

For related structures, see: Blue et al. (2006); Kataeva et al. (1995, 2000); Knight & Keller (2006); Kursheva et al. (2003); Stibrany & Potenza (2007); Stibrany et al. (2006).

Experimental top

trimethyl trithiophosphite (202 mg, 1.2 mmol) was dissolved in thf (20 ml) and [Cu(CH3CN)4]CF3SO3 (440 mg, 1.2 mmol) added. After 15 min. a slight turbidity in the colourless solution was observed and after 1.5 h all volatiles were removed in vacuo affording a yellowish oil. Trituration with diethyl ether (ca 20 ml) and twice with ca 20 ml toluene caused the oil to solidify furnishing the colourless microcrystalline product in quantitative yield. A suitable crystal for X-ray diffraction was grown from thf layered with pentane.

NMR (CD3CN): 1H (300 MHz): δ 2.31 p.p.m. (d, 3JPH 12.1 Hz, 1JCH 155 Hz); 13C{1H} (75 MHz): δ 14.2 p.p.m. (d, 2JPC 10.1 Hz); 31P{1H} (121 MHz): δ 142.1 p.p.m. (s).

IR (cm-1): 2999 (CH3), 2924 (CH3), 1605, 1421 (CH3), 1284 (CF3SO3), 1120 (CF3SO3), 1169 (CF3SO3), 1049, 1019, 962, 764, 734, 668, 626 and 577.

FAB-MS in nitrobenzyl alcohol matrix (m/z): 385 (10%, M+H), 401 (15).

Refinement top

All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. Part of an infinite chain formed by (I), unlabeled atoms are related by one unit cell translation along the a axis; ellipsoids are drawn at the 50% probability level. Symmetry operators: (i) = -x, -y + 1, -z + 1; (ii) = -x + 1, -y + 1, -z + 1.
catena-Poly[copper(I)-bis(µ-trifluoromethanesulfonato- κ2O:O')-copper(I)-bis(µ-trimethyl trithiophosphite)-κ2P:S;κ2S:P] top
Crystal data top
[Cu2(CF3SO3)2(C3H9PS3)2]F(000) = 768
Mr = 769.78Dx = 1.982 Mg m3
Monoclinic, P21/cMelting point: 413 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8347 (15) ÅCell parameters from 4358 reflections
b = 18.306 (3) Åθ = 2.4–26.3°
c = 8.1731 (14) ŵ = 2.49 mm1
β = 102.674 (3)°T = 100 K
V = 1289.6 (4) Å3Block, colourless
Z = 20.10 × 0.08 × 0.04 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2612 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.789, Tmax = 0.907k = 1422
7349 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.5175P]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(CF3SO3)2(C3H9PS3)2]V = 1289.6 (4) Å3
Mr = 769.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8347 (15) ŵ = 2.49 mm1
b = 18.306 (3) ÅT = 100 K
c = 8.1731 (14) Å0.10 × 0.08 × 0.04 mm
β = 102.674 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2425 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.907Rint = 0.021
7349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.87 e Å3
2612 reflectionsΔρmin = 0.42 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.20918 (3)0.512402 (17)0.47201 (4)0.01851 (11)
P10.02869 (7)0.58055 (3)0.31859 (8)0.01703 (15)
S10.19119 (7)0.52875 (3)0.26779 (8)0.01850 (14)
S20.03767 (8)0.61564 (4)0.07703 (8)0.02558 (16)
S30.00504 (8)0.68172 (3)0.42847 (8)0.02322 (16)
S40.54023 (7)0.58664 (3)0.66022 (8)0.01807 (15)
F10.66632 (19)0.70162 (9)0.8235 (2)0.0303 (4)
F20.5529 (3)0.72252 (11)0.5687 (2)0.0546 (6)
F30.4170 (2)0.70427 (11)0.7523 (3)0.0495 (5)
O10.4142 (2)0.57889 (10)0.5143 (2)0.0236 (4)
O20.6913 (2)0.57583 (11)0.6216 (3)0.0357 (5)
O30.5166 (2)0.55310 (12)0.8091 (2)0.0346 (5)
C10.3285 (3)0.60237 (15)0.2002 (4)0.0255 (6)
H1A0.31810.63900.28950.038*
H1B0.43430.58270.17560.038*
H1C0.30730.62520.09910.038*
C20.2468 (3)0.6205 (2)0.1033 (4)0.0350 (7)
H2A0.29070.65010.20240.052*
H2B0.27200.64300.00380.052*
H2C0.29060.57120.11800.052*
C30.0397 (3)0.65795 (15)0.6490 (3)0.0260 (6)
H3A0.04360.62590.66810.039*
H3B0.04200.70250.71590.039*
H3C0.13940.63260.68210.039*
C40.5454 (3)0.68447 (15)0.7022 (4)0.0253 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01952 (17)0.01793 (18)0.01786 (18)0.00236 (11)0.00363 (12)0.00126 (12)
S10.0200 (3)0.0165 (3)0.0185 (3)0.0003 (2)0.0033 (2)0.0018 (2)
S20.0240 (3)0.0364 (4)0.0163 (3)0.0004 (3)0.0043 (3)0.0077 (3)
S30.0312 (3)0.0145 (3)0.0231 (3)0.0005 (3)0.0041 (3)0.0012 (2)
S40.0199 (3)0.0153 (3)0.0187 (3)0.0015 (2)0.0036 (2)0.0016 (2)
P10.0196 (3)0.0170 (3)0.0146 (3)0.0008 (2)0.0039 (2)0.0022 (2)
F10.0341 (9)0.0235 (8)0.0320 (9)0.0079 (7)0.0045 (7)0.0098 (7)
F20.0967 (17)0.0278 (10)0.0348 (11)0.0160 (10)0.0046 (11)0.0099 (8)
F30.0342 (10)0.0369 (11)0.0778 (15)0.0048 (8)0.0130 (10)0.0267 (11)
O10.0255 (10)0.0248 (10)0.0189 (9)0.0059 (8)0.0015 (7)0.0002 (7)
O20.0234 (10)0.0304 (11)0.0537 (14)0.0018 (8)0.0095 (9)0.0214 (10)
O30.0457 (13)0.0321 (11)0.0218 (10)0.0161 (10)0.0014 (9)0.0064 (9)
C10.0225 (13)0.0222 (14)0.0294 (15)0.0042 (10)0.0002 (11)0.0080 (11)
C20.0248 (14)0.056 (2)0.0254 (15)0.0064 (14)0.0072 (11)0.0069 (14)
C30.0373 (15)0.0226 (14)0.0176 (13)0.0004 (11)0.0053 (11)0.0044 (11)
C40.0316 (14)0.0176 (13)0.0256 (14)0.0007 (11)0.0039 (11)0.0006 (11)
Geometric parameters (Å, º) top
Cu1—S1i2.2943 (8)S4—O31.419 (2)
Cu1—P12.1895 (7)F1—C41.326 (3)
Cu1—O12.1466 (18)F2—C41.308 (3)
Cu1—O2ii2.065 (2)F3—C41.338 (3)
P1—S12.1192 (9)C1—H1A0.9800
P1—S22.0941 (9)C1—H1B0.9800
P1—S32.0886 (10)C1—H1C0.9800
S1—C11.816 (3)C2—H2A0.9800
S2—C21.815 (3)C2—H2B0.9800
S3—C31.814 (3)C2—H2C0.9800
S4—C41.822 (3)C3—H3A0.9800
S4—O11.4490 (19)C3—H3B0.9800
S4—O21.451 (2)C3—H3C0.9800
P1—Cu1—S1i121.88 (3)F1—C4—S4110.88 (19)
P1—S1—Cu1i102.25 (3)F2—C4—S4111.7 (2)
S4—O1—Cu1131.05 (11)F3—C4—S4109.64 (19)
S4—O2—Cu1ii132.38 (13)F1—C4—F3107.7 (2)
O1—Cu1—S1i105.35 (5)F2—C4—F1108.5 (2)
O1—Cu1—P1104.59 (6)F2—C4—F3108.2 (2)
O2ii—Cu1—S1i102.03 (7)S1—C1—H1A109.5
O2ii—Cu1—P1123.32 (7)S1—C1—H1B109.5
O2ii—Cu1—O195.18 (8)S1—C1—H1C109.5
C1—S1—Cu1i110.36 (10)H1A—C1—H1B109.5
S1—P1—Cu1112.23 (4)H1A—C1—H1C109.5
S2—P1—Cu1122.77 (4)H1B—C1—H1C109.5
S3—P1—Cu1112.83 (4)S2—C2—H2A109.5
S2—P1—S1100.09 (4)S2—C2—H2B109.5
S3—P1—S1107.89 (4)S2—C2—H2C109.5
S3—P1—S299.29 (4)H2A—C2—H2B109.5
C1—S1—P1104.48 (9)H2A—C2—H2C109.5
C2—S2—P198.73 (10)H2B—C2—H2C109.5
C3—S3—P1101.75 (9)S3—C3—H3A109.5
O1—S4—O2112.64 (13)S3—C3—H3B109.5
O3—S4—O1115.63 (12)S3—C3—H3C109.5
O3—S4—O2116.31 (14)H3A—C3—H3B109.5
O1—S4—C4103.54 (12)H3A—C3—H3C109.5
O2—S4—C4100.87 (13)H3B—C3—H3C109.5
O3—S4—C4105.44 (13)
Cu1—P1—S1—Cu1i47.73 (4)O3—S4—O1—Cu110.1 (2)
Cu1—P1—S1—C1162.81 (10)O3—S4—O2—Cu1ii75.6 (2)
Cu1—P1—S2—C230.47 (13)C4—S4—O1—Cu1124.88 (16)
Cu1—P1—S3—C336.26 (11)C4—S4—O2—Cu1ii170.98 (18)
S1i—Cu1—P1—S158.38 (5)S1—P1—S2—C2155.34 (12)
S1i—Cu1—P1—S2177.61 (4)S1—P1—S3—C388.30 (10)
S1i—Cu1—P1—S363.76 (5)S2—P1—S1—C165.38 (11)
S1i—Cu1—O1—S413.26 (16)S2—P1—S3—C3167.85 (10)
P1—Cu1—O1—S4142.85 (14)S3—P1—S1—C137.90 (11)
S2—P1—S1—Cu1i179.54 (3)S3—P1—S2—C294.47 (12)
S3—P1—S1—Cu1i77.18 (4)O1—S4—C4—F1173.61 (18)
O1—Cu1—P1—S1177.33 (6)O1—S4—C4—F252.4 (2)
O1—Cu1—P1—S263.44 (7)O1—S4—C4—F367.5 (2)
O1—Cu1—P1—S355.19 (6)O2—S4—C4—F156.9 (2)
O2ii—Cu1—P1—S176.24 (8)O2—S4—C4—F264.3 (2)
O2ii—Cu1—P1—S242.98 (9)O2—S4—C4—F3175.7 (2)
O2ii—Cu1—P1—S3161.62 (8)O3—S4—C4—F164.5 (2)
O2ii—Cu1—O1—S490.74 (16)O3—S4—C4—F2174.3 (2)
O1—S4—O2—Cu1ii61.2 (2)O3—S4—C4—F354.3 (2)
O2—S4—O1—Cu1127.02 (15)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(CF3SO3)2(C3H9PS3)2]
Mr769.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8347 (15), 18.306 (3), 8.1731 (14)
β (°) 102.674 (3)
V3)1289.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.789, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
7349, 2612, 2425
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.04
No. of reflections2612
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Cu1—S1i2.2943 (8)P1—S22.0941 (9)
Cu1—P12.1895 (7)P1—S32.0886 (10)
Cu1—O12.1466 (18)S1—C11.816 (3)
Cu1—O2ii2.065 (2)S2—C21.815 (3)
P1—S12.1192 (9)S3—C31.814 (3)
P1—Cu1—S1i121.88 (3)S2—P1—S1100.09 (4)
O1—Cu1—S1i105.35 (5)S3—P1—S1107.89 (4)
O1—Cu1—P1104.59 (6)S3—P1—S299.29 (4)
O2ii—Cu1—S1i102.03 (7)C1—S1—P1104.48 (9)
O2ii—Cu1—P1123.32 (7)C2—S2—P198.73 (10)
O2ii—Cu1—O195.18 (8)C3—S3—P1101.75 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988–5993.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKataeva, O. N., Krivolapov, D. B., Gubaidullin, A. T., Litvinov, I. A., Kursheva, L. I. & Katsyuba, S. A. (2000). J. Mol. Struct. 554, 127–140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKataeva, O. N., Litvinov, I. A., Naumov, V. A., Kursheva, L. I. & Batyeva, E. S. (1995). Inorg. Chem. 34, 5171–5174.  CrossRef CAS Web of Science Google Scholar
First citationKnight, D. A. & Keller, S. W. (2006). J. Chem. Crystallogr. 36, 531–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationKursheva, L. I., Kataeva, O. N., Gubaidullin, A. T., Khasyanzyanova, F. S., Vakhitov, E. V., Krivolapov, D. B. & Batyeva, E. S. (2003). Russ. J. Gen. Chem. 73, 1516–1521.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2007). Private communication (Refcode: VIFSEJ). CCDC, Cambridge, England.  Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2006). Private communication (Refcode: CEJGEE). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds