metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[N,N′-bis­­(3-meth­oxy­benzyl­­idene)ethyl­enedi­amine]copper(I)]-μ-thio­cyanato-κ2N:S]

aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 7 December 2008; accepted 10 December 2008; online 13 December 2008)

In the cyrstal structure of the title compound, [Cu(NCS)(C18H20N2O2)]n, the CuI atom is coordinated in a distorted tetra­hedral geometry by two imino N atoms from a bidentate chelating Schiff base ligand, and one N and one S atoms from two thio­cyanate anions. The thio­cyanate anion bridges the CuI atoms, forming a zigzag chain along [101]. The Schiff base ligand adopts an E,E configuration and the dihedral angle between the terminal benzene rings is 53.68 (8)°.

Related literature

For related copper(I) complexes with bidentate ligands, see: Amirnasr et al. (2006[Amirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713-717.]); Khalaji, Brad & Zhang (2008[Khalaji, A. D., Brad, K. & Zhang, Y. (2008). Acta Cryst. E64, m189.]); Khalaji, Welter et al. (2008[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x137-x138.]); Khalaji & Welter (2006[Khalaji, A. D. & Welter, R. (2006). Inorg. Chim. Acta, 359, 4403-4406.]); Zhao et al. (2008[Zhao, J., Dong, W.-W., Li, D.-S. & He, Q.-F. (2008). Acta Cryst. E64, m1576.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C18H20N2O2)]

  • Mr = 417.99

  • Monoclinic, P 21 /n

  • a = 8.1316 (3) Å

  • b = 23.5113 (9) Å

  • c = 10.1597 (4) Å

  • β = 107.1245 (15)°

  • V = 1856.27 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 193 (1) K

  • 0.31 × 0.17 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.771, Tmax = 0.974

  • 28362 measured reflections

  • 5395 independent reflections

  • 4614 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.05

  • 5395 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—S1 2.3130 (4)
Cu1—N1i 1.9347 (12)
Cu1—N2 2.0917 (12)
Cu1—N3 2.0900 (13)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Synthesis and characterization of copper(I) complexes with bidentate chelating Schiff base ligands have received much attention in recent years (Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008; Zhao et al., 2008). Depending on the ligands involved, copper(I) complexes can show a wide variety of structures (Amirnasr et al., 2006; Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). As part of a general study of transition metal complexes with bidentate chelating Schiff base ligands (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008), here, we reported the synthesis and the crystal structure of the title compound, (I).

The crystal structure of the title compound, (I), is shown in Fig. 1. The Schiff base (3-MeO-ba)2en ligand chelates the CuI atom to form a five-membered ring, with N2—Cu1—N3 = 83.78 (4)°, which is in good agreement with the corresponding angles in related complexes (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). The Cu—N and Cu—S distances (Table 1) are similar to those in the other copper(I) complexes. The C12—N3 and C9—N2 bond lengths of 1.2717 (18) and 1.2665 (18) Å, respectively, conform to the value for a C=N double bond, while the N2—C10 and N3—C11 bond lengths of 1.462 (2) and 1.476 (2) Å, respectively, conform to the value for a C—N single bond. These C—N lengths are comparable to the corresponding values observed in other tetrahedral copper(I) complexes with bidentate chelating Schiff base ligands (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). The bidentate chelating (3-MeO-ba)2en ligand adopts an E,E configuration in this structure.

Related literature top

For related copper(I) complexes with bidentate ligands, see: Amirnasr et al. (2006); Khalaji, Brad & Zhang (2008); Khalaji, Welter et al. (2008); Khalaji & Welter (2006); Zhao et al. (2008).

Experimental top

The title compound, (I), was synthesized using a method analogous to the literature procedure (Khalaji & Welter, 2006), except that CuI was replaced with CuNCS. Single crystals suitable for data collection were obtained by slow evaporation from an acetonitrile solution at 273 K.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing view of the title compound, (I).
catena-Poly[[[N,N'-bis(3- methoxybenzylidene)ethylenediamine]copper(I)]- µ-thiocyanato-κ2N:S] top
Crystal data top
[Cu(NCS)(C18H20N2O2)]F(000) = 864.00
Mr = 417.99Dx = 1.496 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 22727 reflections
a = 8.1316 (3) Åθ = 3.1–30.0°
b = 23.5113 (9) ŵ = 1.31 mm1
c = 10.1597 (4) ÅT = 193 K
β = 107.1245 (15)°Platelet, yellow
V = 1856.27 (11) Å30.31 × 0.17 × 0.02 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4614 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.031
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.771, Tmax = 0.974k = 3232
28362 measured reflectionsl = 1412
5395 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.7637P]
where P = (Fo2 + 2Fc2)/3
5395 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu(NCS)(C18H20N2O2)]V = 1856.27 (11) Å3
Mr = 417.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1316 (3) ŵ = 1.31 mm1
b = 23.5113 (9) ÅT = 193 K
c = 10.1597 (4) Å0.31 × 0.17 × 0.02 mm
β = 107.1245 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5395 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
4614 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.974Rint = 0.031
28362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
5395 reflectionsΔρmin = 0.23 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42300 (2)0.235166 (8)0.471370 (18)0.02525 (6)
S10.16168 (5)0.188164 (18)0.41646 (4)0.03209 (9)
O10.06043 (17)0.34954 (5)0.56184 (14)0.0406 (3)
O20.46009 (18)0.04893 (6)0.71225 (15)0.0472 (3)
N10.01289 (17)0.24053 (6)0.16100 (13)0.0302 (3)
N20.41448 (15)0.30353 (5)0.33778 (12)0.0248 (2)
N30.61360 (15)0.20470 (5)0.38943 (12)0.0245 (2)
C10.07436 (18)0.21886 (6)0.26548 (15)0.0255 (3)
C20.3075 (2)0.38111 (6)0.44500 (16)0.0277 (3)
C30.1706 (2)0.35321 (6)0.47169 (16)0.0281 (3)
H30.13990.31600.43640.034*
C40.0781 (2)0.37944 (6)0.55001 (15)0.0294 (3)
C50.1271 (2)0.43268 (7)0.60751 (18)0.0374 (4)
H50.06570.45040.66260.045*
C60.2674 (3)0.45947 (8)0.5830 (2)0.0476 (5)
H60.30370.49540.62400.057*
C70.3549 (2)0.43480 (7)0.5002 (2)0.0411 (4)
H70.44720.45450.48090.049*
C80.1738 (2)0.37722 (8)0.6249 (2)0.0428 (4)
H8A0.11470.38330.72280.064*
H8B0.27570.35340.61510.064*
H8C0.20910.41400.58000.064*
C90.39553 (19)0.35649 (6)0.35092 (16)0.0283 (3)
H90.44060.38170.29710.034*
C100.4946 (2)0.28431 (7)0.23429 (15)0.0289 (3)
H10A0.52550.31750.18660.035*
H10B0.41270.26040.16490.035*
C110.6547 (2)0.25029 (7)0.30428 (17)0.0299 (3)
H11A0.70200.23340.23380.036*
H11B0.74320.27580.36310.036*
C120.70674 (18)0.16036 (6)0.40348 (16)0.0277 (3)
H120.78940.15910.35410.033*
C130.6977 (2)0.11098 (6)0.48926 (16)0.0291 (3)
C140.8217 (3)0.06895 (8)0.5020 (2)0.0423 (4)
H140.90600.07240.45470.051*
C150.8215 (3)0.02186 (8)0.5846 (2)0.0531 (5)
H150.90690.00670.59420.064*
C160.6993 (3)0.01612 (7)0.6521 (2)0.0471 (5)
H160.69970.01650.70750.056*
C170.5745 (2)0.05804 (7)0.63967 (18)0.0359 (3)
C180.5742 (2)0.10550 (7)0.55896 (17)0.0307 (3)
H180.49000.13430.55110.037*
C190.3301 (3)0.09082 (10)0.7005 (2)0.0532 (5)
H19A0.38410.12790.72800.080*
H19B0.25990.08070.76060.080*
H19C0.25690.09270.60480.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02571 (10)0.02875 (10)0.02277 (9)0.00058 (7)0.00944 (7)0.00156 (6)
S10.02396 (18)0.0417 (2)0.02944 (18)0.00463 (15)0.00609 (14)0.01091 (15)
O10.0427 (7)0.0376 (6)0.0521 (7)0.0008 (5)0.0304 (6)0.0038 (5)
O20.0445 (7)0.0437 (7)0.0519 (8)0.0052 (6)0.0118 (6)0.0206 (6)
N10.0276 (6)0.0381 (7)0.0254 (6)0.0013 (5)0.0084 (5)0.0009 (5)
N20.0246 (6)0.0277 (6)0.0243 (6)0.0011 (5)0.0103 (4)0.0022 (4)
N30.0219 (6)0.0267 (6)0.0265 (6)0.0017 (4)0.0097 (4)0.0012 (5)
C10.0207 (6)0.0308 (7)0.0267 (7)0.0019 (5)0.0094 (5)0.0021 (5)
C20.0309 (7)0.0231 (6)0.0304 (7)0.0032 (5)0.0109 (6)0.0021 (5)
C30.0325 (8)0.0231 (6)0.0310 (7)0.0022 (5)0.0127 (6)0.0001 (5)
C40.0332 (8)0.0288 (7)0.0286 (7)0.0039 (6)0.0127 (6)0.0026 (6)
C50.0460 (10)0.0326 (8)0.0382 (9)0.0058 (7)0.0193 (7)0.0056 (7)
C60.0555 (12)0.0295 (8)0.0619 (12)0.0046 (8)0.0238 (10)0.0167 (8)
C70.0429 (10)0.0291 (8)0.0558 (11)0.0066 (7)0.0218 (8)0.0073 (7)
C80.0414 (10)0.0485 (10)0.0466 (10)0.0115 (8)0.0253 (8)0.0059 (8)
C90.0289 (7)0.0272 (7)0.0308 (7)0.0003 (5)0.0122 (6)0.0047 (6)
C100.0337 (8)0.0311 (7)0.0262 (7)0.0027 (6)0.0156 (6)0.0025 (6)
C110.0282 (7)0.0314 (7)0.0349 (8)0.0005 (6)0.0170 (6)0.0022 (6)
C120.0218 (7)0.0315 (7)0.0310 (7)0.0002 (5)0.0096 (5)0.0033 (6)
C130.0280 (7)0.0268 (7)0.0300 (7)0.0022 (6)0.0048 (6)0.0038 (6)
C140.0468 (10)0.0380 (9)0.0434 (10)0.0151 (8)0.0154 (8)0.0034 (7)
C150.0703 (14)0.0342 (9)0.0539 (11)0.0251 (9)0.0167 (10)0.0000 (8)
C160.0649 (13)0.0244 (7)0.0448 (10)0.0057 (8)0.0052 (9)0.0040 (7)
C170.0369 (9)0.0293 (7)0.0363 (8)0.0051 (6)0.0026 (7)0.0032 (6)
C180.0270 (7)0.0266 (7)0.0358 (8)0.0002 (6)0.0050 (6)0.0030 (6)
C190.0392 (10)0.0670 (13)0.0561 (12)0.0005 (9)0.0183 (9)0.0273 (10)
Geometric parameters (Å, º) top
Cu1—S12.3130 (4)C14—C151.389 (2)
Cu1—N1i1.9347 (12)C15—C161.370 (3)
Cu1—N22.0917 (12)C16—C171.394 (2)
Cu1—N32.0900 (13)C17—C181.384 (2)
S1—C11.6542 (14)C3—H30.950
O1—C41.363 (2)C5—H50.950
O1—C81.425 (2)C6—H60.950
O2—C171.364 (2)C7—H70.950
O2—C191.424 (2)C8—H8A0.980
N1—C11.1505 (18)C8—H8B0.980
N2—C91.2665 (18)C8—H8C0.980
N2—C101.462 (2)C9—H90.950
N3—C111.476 (2)C10—H10A0.990
N3—C121.2717 (18)C10—H10B0.990
C2—C31.386 (2)C11—H11A0.990
C2—C71.389 (2)C11—H11B0.990
C2—C91.471 (2)C12—H120.950
C3—C41.390 (2)C14—H140.950
C4—C51.389 (2)C15—H150.950
C5—C61.388 (3)C16—H160.950
C6—C71.380 (3)C18—H180.950
C10—C111.515 (2)C19—H19A0.980
C12—C131.467 (2)C19—H19B0.980
C13—C141.390 (2)C19—H19C0.980
C13—C181.394 (2)
S1—Cu1—N1i115.61 (4)C4—C3—H3119.9
S1—Cu1—N2110.98 (3)C4—C5—H5120.6
S1—Cu1—N3118.46 (3)C6—C5—H5120.6
N1i—Cu1—N2110.48 (5)C5—C6—H6119.4
N1i—Cu1—N3113.01 (5)C7—C6—H6119.4
N2—Cu1—N383.78 (4)C2—C7—H7120.1
Cu1—S1—C197.37 (5)C6—C7—H7120.1
C4—O1—C8117.71 (13)O1—C8—H8A109.5
C17—O2—C19117.00 (15)O1—C8—H8B109.5
Cu1ii—N1—C1169.62 (13)O1—C8—H8C109.5
Cu1—N2—C9131.98 (11)H8A—C8—H8B109.5
Cu1—N2—C10107.01 (8)H8A—C8—H8C109.5
C9—N2—C10118.26 (14)H8B—C8—H8C109.5
Cu1—N3—C11107.88 (9)N2—C9—H9118.2
Cu1—N3—C12136.32 (11)C2—C9—H9118.2
C11—N3—C12115.52 (14)N2—C10—H10A109.8
S1—C1—N1179.41 (15)N2—C10—H10B109.8
C3—C2—C7119.65 (17)C11—C10—H10A109.8
C3—C2—C9120.89 (13)C11—C10—H10B109.8
C7—C2—C9119.31 (16)H10A—C10—H10B108.3
C2—C3—C4120.22 (13)N3—C11—H11A109.6
O1—C4—C3114.99 (12)N3—C11—H11B109.6
O1—C4—C5124.75 (16)C10—C11—H11A109.6
C3—C4—C5120.26 (16)C10—C11—H11B109.6
C4—C5—C6118.86 (18)H11A—C11—H11B108.1
C5—C6—C7121.14 (17)N3—C12—H12117.2
C2—C7—C6119.77 (18)C13—C12—H12117.2
N2—C9—C2123.57 (15)C13—C14—H14120.2
N2—C10—C11109.21 (12)C15—C14—H14120.2
N3—C11—C10110.28 (13)C14—C15—H15119.7
N3—C12—C13125.68 (15)C16—C15—H15119.6
C12—C13—C14117.15 (16)C15—C16—H16120.0
C12—C13—C18123.00 (14)C17—C16—H16120.0
C14—C13—C18119.84 (15)C13—C18—H18120.0
C13—C14—C15119.6 (2)C17—C18—H18120.0
C14—C15—C16120.70 (19)O2—C19—H19A109.5
C15—C16—C17120.06 (17)O2—C19—H19B109.5
O2—C17—C16115.76 (16)O2—C19—H19C109.5
O2—C17—C18124.37 (15)H19A—C19—H19B109.5
C16—C17—C18119.87 (18)H19A—C19—H19C109.5
C13—C18—C17119.96 (15)H19B—C19—H19C109.5
C2—C3—H3119.9
S1—Cu1—N1i—C1i141.8 (7)C11—N3—C12—C13176.20 (12)
N1i—Cu1—S1—C1138.73 (7)C12—N3—C11—C10150.57 (12)
S1—Cu1—N2—C9100.29 (12)C3—C2—C7—C61.2 (2)
S1—Cu1—N2—C1099.44 (8)C7—C2—C3—C41.8 (2)
N2—Cu1—S1—C111.92 (7)C3—C2—C9—N233.1 (2)
S1—Cu1—N3—C11119.32 (7)C9—C2—C3—C4173.74 (12)
S1—Cu1—N3—C1267.25 (13)C7—C2—C9—N2151.34 (14)
N3—Cu1—S1—C182.44 (6)C9—C2—C7—C6176.78 (15)
N1i—Cu1—N2—C929.30 (14)C2—C3—C4—O1175.86 (12)
N1i—Cu1—N2—C10130.97 (8)C2—C3—C4—C53.0 (2)
N2—Cu1—N1i—C1i14.7 (7)O1—C4—C5—C6177.52 (14)
N1i—Cu1—N3—C11100.84 (9)C3—C4—C5—C61.3 (2)
N1i—Cu1—N3—C1272.59 (14)C4—C5—C6—C71.7 (2)
N3—Cu1—N1i—C1i77.2 (7)C5—C6—C7—C23.0 (2)
N2—Cu1—N3—C118.80 (8)N2—C10—C11—N352.70 (16)
N2—Cu1—N3—C12177.78 (13)N3—C12—C13—C14173.84 (14)
N3—Cu1—N2—C9141.57 (13)N3—C12—C13—C184.8 (2)
N3—Cu1—N2—C1018.70 (8)C12—C13—C14—C15178.56 (15)
C8—O1—C4—C3171.75 (13)C12—C13—C18—C17179.16 (13)
C8—O1—C4—C57.1 (2)C14—C13—C18—C170.6 (2)
C19—O2—C17—C16179.45 (15)C18—C13—C14—C150.1 (2)
C19—O2—C17—C181.5 (2)C13—C14—C15—C160.7 (2)
Cu1—N2—C9—C225.4 (2)C14—C15—C16—C170.7 (2)
Cu1—N2—C10—C1142.47 (13)C15—C16—C17—O2179.10 (15)
C9—N2—C10—C11120.98 (14)C15—C16—C17—C180.0 (2)
C10—N2—C9—C2176.11 (11)O2—C17—C18—C13179.63 (14)
Cu1—N3—C11—C1034.46 (13)C16—C17—C18—C130.6 (2)
Cu1—N3—C12—C133.1 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C18H20N2O2)]
Mr417.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)8.1316 (3), 23.5113 (9), 10.1597 (4)
β (°) 107.1245 (15)
V3)1856.27 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.31 × 0.17 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.771, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
28362, 5395, 4614
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.05
No. of reflections5395
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.23

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—S12.3130 (4)Cu1—N22.0917 (12)
Cu1—N1i1.9347 (12)Cu1—N32.0900 (13)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: alidkhalaji@yahoo.com.

References

First citationAmirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713–717.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKhalaji, A. D., Brad, K. & Zhang, Y. (2008). Acta Cryst. E64, m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Welter, R. (2006). Inorg. Chim. Acta, 359, 4403–4406.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x137–x138.  CAS Google Scholar
First citationRigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J., Dong, W.-W., Li, D.-S. & He, Q.-F. (2008). Acta Cryst. E64, m1576.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds