metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-ferrocenylethanone oximato)tri­phenyl­anti­mony(V)

aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: jinshifan@yahoo.cn

(Received 18 August 2008; accepted 26 November 2008; online 6 December 2008)

In the title compound, [Fe2Sb(C5H5)2(C6H5)3(C7H7NO)2] or [Sb(C6H5)3{Fe(C5H5)(C7H7NO)}2], the Sb center has a slightly distorted trigonal-bipyramidal geometry, with the three phenyl ligands in equatorial positions and the two O atoms from the ferrocenylethanone oximate ligands in axial positions. The crystal structure is stabilized by two inter­molecular C—H⋯π inter­actions.

Related literature

For anti­mony compounds with cytotoxicity and anti­tumor activities, see: Takahashi et al. (2002[Takahashi, S., Sato, H., Kubota, Y., Utsumi, H., Bedford, J. S. & Okayasu, R. (2002). Toxicology, 180, 249-256.]). For a related structure, see: Sharma et al. (2003[Sharma, N., Jain, A. K., Sharma, R. K., Bohra, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2003). Polyhedron, pp. 2943-2946.]).

[Scheme 1]

Experimental

Crystal data
  • [[Fe2Sb(C5H5)2(C6H5)3(C7H7NO)2]

  • Mr = 837.20

  • Orthorhombic, P n a 21

  • a = 19.921 (2) Å

  • b = 19.938 (2) Å

  • c = 9.371 (1) Å

  • V = 3722.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 298 (2) K

  • 0.42 × 0.36 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.566, Tmax = 0.850

  • 15019 measured reflections

  • 6305 independent reflections

  • 4319 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.119

  • S = 0.95

  • 6305 reflections

  • 442 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2803 Friedel pairs

  • Flack parameter: −0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.93 2.78 3.677 (4) 163
C21—H21⋯Cg2ii 0.93 3.03 3.751 (3) 136
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C15–C19 cyclo­penta­dienyl ring and the C25–C30 benzene ring, respectively.

Data collection: SMART (Bruker 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Research on some main group and early transition metal complexes with internally functionalized oximes have shown that oximes were an important class of N/O donor ligands having different coordinating abilities with the metal centers (Sharma, et al., 2003). On the other hand, antimony compounds have been reported with good cytotoxicity and antitumor activities, some of them can affect the repair of the DNA-double strand break (Takahashi et al., 2002). However, to our best knowledge, corresponding triorganoantimony (V) compounds with these ligands were hitherto unknown. Here we report the crystal structure of the title compound, bis(acetylferrocenyoximato)triphenylantimony(V) (Fig. 1).

The compound was an interesting heterometallic (Sb, Fe) compound (Fig.1). The Sb atom is five-coordinated with a distorted trigonal-bipyramidal geometry (Table 1, Fig.1). Around the central Sb atom, atoms C25, C31, C37 occupy the equatorial plane, while O1 and O2 lie in axial sites. The axial bond angle O2—Sb1—O1 [173.5 (2)°] deviates from linearity by 6.5°. The sum of C31—Sb1—C37 [118.1 (4)°], C31—Sb1—C25 [122.3 (4)°] and C37—Sb1—C25 [119.6 (4)°] bond angles is 360°, which shows that these atoms have slightly deviations from ideal trigonal-bipyramidal geometry. The crystal structure is stabilized by two intermolecular C—H···π interactions (Table 1 and Fig. 2); one between a cyclopentadienyl-H atom and the cyclopentadienyl ring of a neighbouring molecule, with a C11—H11···Cg1i separation of 2.78 Å, a second between a cyclopentadienyl H atom and the benzene ring of an adjacent molecule, with a C21—H21···Cg2ii separation of 3.03 Å (Cg1 and Cg2 are the centroids of the C15–C19 cyclopentadienyl ring and the C25–C30 benzene ring, respectively, symmetry code as in Fig. 2).

Related literature top

For antimony compounds with good cytotoxicity and antitumor activities, see: Takahashi et al. (2002). For a related structure, see: Sharma et al. (2003). Cg1 and Cg2 are the centroids of the C15–C19 cyclopentadienyl ring and the C25–C30 benzene ring, respectively,

Experimental top

Acetylferrocenyloxime (1.46 g, 6 mmol) was added to a stirring solution containing dibromotriphenylantimony (1.54 g, 3 mmol) in tetrahydrofuran (50 ml). After stirring for 12 h at room temperature the orange solution was obtained and then filtered. The resulting clear solution was evaporated under vacuum until the orange solid is obtained. The solid was recrystallized from ethanol to give orange crystals, yield 72%, decomposition temperature 485 K. Anal. Calcd (%) for C42H39Fe2N2O2Sb: C, 60.25; H, 4.70; N, 3.35%; Found: C, 60.96; H, 4.83; N, 3.72%.

Refinement top

H atoms were positioned geometrically [0.93 (CH), and 0.96 (CH3) Å] and constrained to ride on their parent atoms with Uiso(H) = 1.2(1.5 for methyl)Ueq.

Computing details top

Data collection: SMART (Bruker 1998); cell refinement: SAINT (Bruker 1998); data reduction: SAINT (Bruker 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-hydrogen atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x - 1/2, -y + 1/2, z + 1; (ii) -x + 1, -y + 1, z - 1/2.]
Bis(1-ferrocenylethanone oximato)triphenylantimony(V) top
Crystal data top
[Fe2Sb(C5H5)2(C6H5)3(C7H7NO)2]F(000) = 1696
Mr = 837.20Dx = 1.494 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3650 reflections
a = 19.921 (2) Åθ = 2.6–20.9°
b = 19.938 (2) ŵ = 1.53 mm1
c = 9.371 (1) ÅT = 298 K
V = 3722.0 (7) Å3Block, orange
Z = 40.42 × 0.36 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
6305 independent reflections
Radiation source: fine-focus sealed tube4319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.4°
ϕ and ω scansh = 2322
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1623
Tmin = 0.566, Tmax = 0.850l = 1111
15019 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
6305 reflectionsΔρmax = 0.66 e Å3
442 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 2803 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
[Fe2Sb(C5H5)2(C6H5)3(C7H7NO)2]V = 3722.0 (7) Å3
Mr = 837.20Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.921 (2) ŵ = 1.53 mm1
b = 19.938 (2) ÅT = 298 K
c = 9.371 (1) Å0.42 × 0.36 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
6305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4319 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.850Rint = 0.054
15019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.66 e Å3
S = 0.95Δρmin = 0.38 e Å3
6305 reflectionsAbsolute structure: Flack (1983), 2803 Friedel pairs
442 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.59602 (2)0.30774 (2)0.45296 (7)0.05361 (15)
Fe10.45127 (7)0.10703 (6)0.89653 (14)0.0681 (4)
Fe20.70848 (6)0.58368 (6)0.14551 (14)0.0652 (4)
N10.5302 (4)0.1883 (4)0.5553 (8)0.0640 (19)
N20.6814 (4)0.4088 (3)0.3258 (7)0.0633 (18)
O10.5168 (2)0.2409 (2)0.4595 (8)0.0659 (13)
O20.6689 (2)0.3812 (3)0.4621 (8)0.0670 (13)
C10.4100 (5)0.1668 (5)0.5137 (12)0.090 (3)
H1A0.40430.21390.49600.134*
H1B0.37530.15150.57670.134*
H1C0.40740.14280.42510.134*
C20.4784 (6)0.1548 (5)0.5823 (11)0.078 (3)
C30.4860 (6)0.1007 (5)0.6887 (12)0.085 (3)
C40.5387 (6)0.0953 (5)0.7878 (13)0.091 (3)
H40.57530.12400.79540.110*
C50.5255 (6)0.0374 (6)0.8757 (12)0.097 (3)
H50.55380.02140.94700.116*
C60.4659 (7)0.0095 (6)0.8392 (12)0.094 (4)
H60.44670.02810.88140.113*
C70.4370 (6)0.0479 (5)0.7241 (13)0.093 (3)
H70.39560.04070.68070.112*
C80.4162 (7)0.2018 (6)0.9327 (18)0.096 (4)
H80.41950.23830.87150.116*
C90.4622 (7)0.1856 (6)1.0319 (14)0.100 (4)
H90.50140.20961.04930.120*
C100.4431 (8)0.1279 (7)1.1052 (14)0.108 (4)
H100.46670.10431.17450.129*
C110.3801 (7)0.1145 (6)1.0489 (15)0.104 (4)
H110.35150.08121.08260.125*
C120.3649 (6)0.1579 (7)0.9337 (17)0.108 (4)
H120.32800.15650.87300.130*
C130.7584 (5)0.4761 (5)0.4745 (13)0.096 (3)
H13A0.72390.48520.54340.144*
H13B0.78540.51550.46110.144*
H13C0.78610.44000.50790.144*
C140.7265 (5)0.4567 (5)0.3346 (11)0.077 (3)
C150.7438 (5)0.4917 (5)0.2045 (14)0.082 (3)
C160.7102 (6)0.4871 (5)0.0709 (14)0.091 (3)
H160.67350.45970.05150.109*
C170.7422 (6)0.5317 (5)0.0299 (16)0.095 (3)
H170.72980.53990.12410.114*
C180.7966 (6)0.5604 (6)0.0468 (14)0.095 (3)
H180.82800.58970.00770.114*
C190.7969 (5)0.5387 (5)0.1889 (13)0.089 (3)
H190.82650.55250.26000.107*
C200.6112 (6)0.6074 (7)0.1771 (16)0.101 (4)
H200.57580.57760.16380.121*
C210.6387 (6)0.6498 (6)0.0766 (14)0.099 (4)
H210.62350.65480.01660.119*
C220.6925 (6)0.6836 (5)0.1362 (15)0.095 (3)
H220.72030.71440.09090.114*
C230.6966 (6)0.6626 (6)0.2767 (16)0.098 (3)
H230.72830.67640.34330.118*
C240.6461 (6)0.6181 (6)0.3000 (15)0.096 (3)
H240.63680.59790.38720.115*
C250.6560 (5)0.2430 (4)0.3274 (9)0.067 (2)
C260.6275 (6)0.1856 (5)0.2682 (11)0.079 (3)
H260.58280.17450.28490.095*
C270.6682 (6)0.1454 (5)0.1832 (11)0.089 (3)
H270.65000.10740.14060.107*
C280.7336 (6)0.1602 (6)0.1611 (12)0.091 (3)
H280.76000.13150.10660.109*
C290.7608 (6)0.2159 (6)0.2169 (12)0.087 (3)
H290.80540.22620.19760.104*
C300.7232 (5)0.2582 (5)0.3030 (11)0.080 (3)
H300.74250.29610.34370.096*
C310.6042 (5)0.3120 (4)0.6763 (10)0.065 (2)
C320.6653 (6)0.3155 (5)0.7442 (11)0.085 (3)
H320.70490.31260.69230.102*
C330.6669 (6)0.3238 (5)0.8957 (12)0.092 (3)
H330.70790.32410.94310.110*
C340.6108 (6)0.3311 (5)0.9689 (15)0.082 (3)
H340.61220.33681.06730.099*
C350.5531 (6)0.3302 (5)0.9021 (12)0.082 (3)
H350.51380.33610.95410.099*
C360.5492 (5)0.3210 (4)0.7595 (11)0.078 (3)
H360.50710.32070.71660.094*
C370.5264 (5)0.3719 (5)0.3527 (11)0.074 (3)
C380.4780 (5)0.3472 (6)0.2615 (12)0.083 (3)
H380.47640.30160.24050.100*
C390.4309 (6)0.3916 (7)0.2003 (13)0.095 (4)
H390.39960.37560.13500.115*
C400.4311 (6)0.4554 (7)0.2353 (14)0.094 (4)
H400.39940.48390.19460.112*
C410.4770 (6)0.4817 (6)0.3310 (14)0.095 (4)
H410.47500.52650.35810.114*
C420.5258 (5)0.4398 (5)0.3852 (12)0.088 (3)
H420.55890.45740.44440.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0594 (3)0.0579 (3)0.0435 (3)0.0023 (3)0.0035 (3)0.0021 (3)
Fe10.0767 (9)0.0633 (7)0.0644 (8)0.0096 (7)0.0159 (7)0.0021 (6)
Fe20.0649 (8)0.0635 (7)0.0673 (9)0.0028 (6)0.0009 (7)0.0003 (6)
N10.073 (5)0.064 (5)0.055 (5)0.000 (4)0.013 (4)0.009 (4)
N20.072 (5)0.065 (4)0.053 (4)0.013 (4)0.001 (4)0.002 (4)
O10.067 (3)0.070 (3)0.061 (3)0.011 (3)0.001 (4)0.015 (4)
O20.067 (3)0.081 (3)0.053 (3)0.014 (3)0.003 (4)0.003 (4)
C10.089 (8)0.089 (7)0.091 (8)0.025 (6)0.000 (6)0.008 (6)
C20.095 (8)0.069 (6)0.070 (7)0.001 (6)0.027 (6)0.000 (5)
C30.102 (8)0.077 (7)0.075 (8)0.000 (6)0.028 (7)0.003 (6)
C40.101 (8)0.089 (8)0.084 (8)0.006 (7)0.029 (7)0.012 (6)
C50.111 (9)0.092 (8)0.088 (8)0.007 (7)0.025 (8)0.013 (7)
C60.113 (10)0.087 (8)0.083 (9)0.004 (7)0.031 (7)0.004 (6)
C70.109 (8)0.085 (7)0.084 (8)0.007 (7)0.024 (7)0.001 (6)
C80.112 (9)0.091 (8)0.086 (12)0.006 (7)0.025 (8)0.002 (7)
C90.117 (10)0.094 (9)0.091 (9)0.000 (8)0.014 (8)0.004 (7)
C100.126 (12)0.110 (10)0.088 (10)0.005 (9)0.020 (9)0.003 (8)
C110.112 (10)0.101 (9)0.098 (10)0.011 (8)0.044 (9)0.001 (8)
C120.112 (9)0.116 (9)0.098 (12)0.008 (8)0.022 (9)0.008 (9)
C130.106 (8)0.075 (6)0.107 (10)0.006 (6)0.031 (8)0.006 (6)
C140.075 (7)0.068 (6)0.087 (8)0.003 (6)0.005 (6)0.000 (5)
C150.079 (7)0.073 (7)0.093 (9)0.009 (6)0.009 (7)0.003 (6)
C160.095 (8)0.084 (8)0.094 (9)0.006 (6)0.013 (7)0.003 (6)
C170.103 (8)0.085 (6)0.097 (8)0.009 (6)0.012 (9)0.005 (8)
C180.094 (9)0.085 (8)0.105 (10)0.009 (7)0.018 (8)0.004 (7)
C190.085 (8)0.080 (7)0.102 (10)0.005 (6)0.003 (7)0.004 (6)
C200.095 (9)0.096 (9)0.111 (11)0.013 (7)0.005 (8)0.003 (8)
C210.103 (9)0.093 (8)0.101 (10)0.017 (8)0.000 (8)0.000 (8)
C220.103 (10)0.083 (8)0.098 (10)0.011 (7)0.002 (8)0.001 (7)
C230.106 (10)0.084 (7)0.104 (11)0.019 (7)0.003 (8)0.005 (7)
C240.098 (9)0.093 (8)0.097 (10)0.018 (7)0.013 (8)0.001 (7)
C250.078 (7)0.069 (6)0.054 (5)0.015 (5)0.015 (5)0.004 (5)
C260.098 (7)0.077 (7)0.063 (6)0.019 (6)0.020 (6)0.001 (5)
C270.105 (9)0.086 (7)0.075 (8)0.011 (7)0.018 (7)0.007 (6)
C280.105 (9)0.091 (8)0.078 (8)0.020 (7)0.025 (7)0.001 (7)
C290.092 (8)0.088 (7)0.080 (8)0.017 (7)0.026 (6)0.002 (6)
C300.091 (8)0.079 (7)0.069 (7)0.021 (6)0.015 (6)0.001 (5)
C310.071 (6)0.076 (6)0.049 (5)0.002 (5)0.004 (5)0.008 (4)
C320.086 (7)0.108 (8)0.061 (7)0.006 (6)0.004 (6)0.001 (6)
C330.096 (8)0.112 (8)0.067 (7)0.005 (7)0.012 (7)0.001 (6)
C340.095 (8)0.099 (7)0.054 (7)0.010 (6)0.007 (7)0.001 (6)
C350.097 (8)0.089 (7)0.060 (7)0.006 (6)0.010 (6)0.000 (5)
C360.087 (7)0.093 (7)0.054 (6)0.012 (6)0.000 (6)0.001 (5)
C370.071 (7)0.080 (7)0.069 (7)0.014 (5)0.014 (6)0.017 (5)
C380.078 (7)0.095 (7)0.076 (8)0.020 (6)0.012 (6)0.023 (6)
C390.083 (8)0.114 (10)0.090 (9)0.011 (8)0.010 (7)0.026 (7)
C400.083 (8)0.105 (10)0.092 (9)0.023 (7)0.013 (7)0.035 (7)
C410.090 (8)0.097 (8)0.099 (9)0.022 (7)0.018 (7)0.025 (7)
C420.080 (7)0.094 (8)0.091 (7)0.017 (6)0.009 (6)0.025 (6)
Geometric parameters (Å, º) top
Sb1—O22.064 (5)C13—H13B0.9600
Sb1—O12.067 (5)C13—H13C0.9600
Sb1—C312.101 (9)C14—C151.447 (14)
Sb1—C372.107 (10)C15—C191.421 (13)
Sb1—C252.117 (9)C15—C161.423 (15)
Fe1—C102.006 (13)C16—C171.445 (15)
Fe1—C112.018 (11)C16—H160.9300
Fe1—C72.021 (11)C17—C181.422 (15)
Fe1—C92.027 (12)C17—H170.9300
Fe1—C122.028 (11)C18—C191.400 (15)
Fe1—C42.031 (10)C18—H180.9300
Fe1—C62.038 (11)C19—H190.9300
Fe1—C52.038 (11)C20—C241.362 (16)
Fe1—C82.042 (11)C20—C211.379 (15)
Fe1—C32.070 (10)C20—H200.9300
Fe2—C232.010 (12)C21—C221.384 (14)
Fe2—C202.018 (12)C21—H210.9300
Fe2—C192.019 (11)C22—C231.385 (16)
Fe2—C222.020 (10)C22—H220.9300
Fe2—C212.022 (11)C23—C241.358 (14)
Fe2—C242.027 (12)C23—H230.9300
Fe2—C182.038 (11)C24—H240.9300
Fe2—C152.041 (10)C25—C301.390 (12)
Fe2—C162.049 (11)C25—C261.393 (12)
Fe2—C172.056 (12)C26—C271.390 (13)
N1—C21.255 (11)C26—H260.9300
N1—O11.406 (9)C27—C281.352 (14)
N2—C141.312 (11)C27—H270.9300
N2—O21.414 (9)C28—C291.341 (14)
C1—C21.525 (15)C28—H280.9300
C1—H1A0.9600C29—C301.388 (13)
C1—H1B0.9600C29—H290.9300
C1—H1C0.9600C30—H300.9300
C2—C31.477 (14)C31—C361.356 (12)
C3—C41.405 (15)C31—C321.374 (13)
C3—C71.474 (13)C32—C331.429 (14)
C4—C51.443 (14)C32—H320.9300
C4—H40.9300C33—C341.319 (14)
C5—C61.355 (14)C33—H330.9300
C5—H50.9300C34—C351.309 (14)
C6—C71.442 (15)C34—H340.9300
C6—H60.9300C35—C361.351 (13)
C7—H70.9300C35—H350.9300
C8—C91.345 (18)C36—H360.9300
C8—C121.346 (15)C37—C381.380 (13)
C8—H80.9300C37—C421.389 (14)
C9—C101.391 (16)C38—C391.412 (14)
C9—H90.9300C38—H380.9300
C10—C111.387 (17)C39—C401.315 (15)
C10—H100.9300C39—H390.9300
C11—C121.417 (17)C40—C411.383 (15)
C11—H110.9300C40—H400.9300
C12—H120.9300C41—C421.378 (13)
C13—C141.507 (14)C41—H410.9300
C13—H13A0.9600C42—H420.9300
O2—Sb1—O1173.5 (2)Fe1—C8—H8126.8
O2—Sb1—C3182.8 (3)C8—C9—C10110.7 (13)
O1—Sb1—C3193.2 (3)C8—C9—Fe171.3 (8)
O2—Sb1—C3792.9 (3)C10—C9—Fe169.0 (7)
O1—Sb1—C3784.4 (3)C8—C9—H9124.7
C31—Sb1—C37118.1 (4)C10—C9—H9124.7
O2—Sb1—C2593.4 (3)Fe1—C9—H9126.7
O1—Sb1—C2593.1 (3)C11—C10—C9102.7 (13)
C31—Sb1—C25122.3 (4)C11—C10—Fe170.3 (8)
C37—Sb1—C25119.6 (4)C9—C10—Fe170.6 (8)
C10—Fe1—C1140.3 (5)C11—C10—H10128.7
C10—Fe1—C7152.8 (5)C9—C10—H10128.7
C11—Fe1—C7120.7 (5)Fe1—C10—H10122.3
C10—Fe1—C940.4 (5)C10—C11—C12111.4 (12)
C11—Fe1—C964.9 (5)C10—C11—Fe169.4 (7)
C7—Fe1—C9165.1 (5)C12—C11—Fe169.9 (7)
C10—Fe1—C1270.1 (6)C10—C11—H11124.3
C11—Fe1—C1241.0 (5)C12—C11—H11124.3
C7—Fe1—C12108.1 (5)Fe1—C11—H11128.2
C9—Fe1—C1266.2 (5)C8—C12—C11103.9 (13)
C10—Fe1—C4125.6 (6)C8—C12—Fe171.2 (7)
C11—Fe1—C4165.0 (6)C11—C12—Fe169.1 (7)
C7—Fe1—C469.7 (5)C8—C12—H12128.1
C9—Fe1—C4108.1 (5)C11—C12—H12128.1
C12—Fe1—C4150.6 (5)Fe1—C12—H12123.4
C10—Fe1—C6117.8 (5)C14—C13—H13A109.5
C11—Fe1—C6110.9 (5)C14—C13—H13B109.5
C7—Fe1—C641.6 (4)H13A—C13—H13B109.5
C9—Fe1—C6152.4 (6)C14—C13—H13C109.5
C12—Fe1—C6130.1 (5)H13A—C13—H13C109.5
C4—Fe1—C668.6 (4)H13B—C13—H13C109.5
C10—Fe1—C5107.1 (5)N2—C14—C15117.4 (10)
C11—Fe1—C5128.9 (5)N2—C14—C13122.0 (9)
C7—Fe1—C568.2 (5)C15—C14—C13120.5 (9)
C9—Fe1—C5120.6 (6)C19—C15—C16107.6 (10)
C12—Fe1—C5166.7 (5)C19—C15—C14125.7 (12)
C4—Fe1—C541.6 (4)C16—C15—C14126.7 (11)
C6—Fe1—C538.8 (4)C19—C15—Fe268.7 (6)
C10—Fe1—C867.6 (6)C16—C15—Fe269.9 (6)
C11—Fe1—C864.8 (5)C14—C15—Fe2125.4 (7)
C7—Fe1—C8128.6 (6)C15—C16—C17109.2 (11)
C9—Fe1—C838.6 (5)C15—C16—Fe269.3 (6)
C12—Fe1—C838.6 (4)C17—C16—Fe269.7 (6)
C4—Fe1—C8118.9 (4)C15—C16—H16125.4
C6—Fe1—C8167.2 (6)C17—C16—H16125.4
C5—Fe1—C8153.4 (5)Fe2—C16—H16127.2
C10—Fe1—C3163.1 (6)C18—C17—C16104.6 (12)
C11—Fe1—C3154.8 (6)C18—C17—Fe269.0 (7)
C7—Fe1—C342.2 (4)C16—C17—Fe269.1 (7)
C9—Fe1—C3126.9 (5)C18—C17—H17127.7
C12—Fe1—C3118.4 (6)C16—C17—H17127.7
C4—Fe1—C340.0 (4)Fe2—C17—H17125.7
C6—Fe1—C369.3 (4)C19—C18—C17111.1 (11)
C5—Fe1—C368.0 (4)C19—C18—Fe269.1 (7)
C8—Fe1—C3109.1 (5)C17—C18—Fe270.3 (7)
C23—Fe2—C2067.3 (5)C19—C18—H18124.4
C23—Fe2—C19109.1 (5)C17—C18—H18124.4
C20—Fe2—C19156.0 (6)Fe2—C18—H18127.8
C23—Fe2—C2240.2 (5)C18—C19—C15107.3 (11)
C20—Fe2—C2267.9 (5)C18—C19—Fe270.6 (7)
C19—Fe2—C22125.8 (5)C15—C19—Fe270.3 (6)
C23—Fe2—C2166.7 (5)C18—C19—H19126.3
C20—Fe2—C2139.9 (4)C15—C19—H19126.3
C19—Fe2—C21162.6 (5)Fe2—C19—H19124.4
C22—Fe2—C2140.1 (4)C24—C20—C21106.2 (13)
C23—Fe2—C2439.3 (4)C24—C20—Fe270.7 (7)
C20—Fe2—C2439.4 (4)C21—C20—Fe270.2 (7)
C19—Fe2—C24122.8 (5)C24—C20—H20126.9
C22—Fe2—C2466.4 (5)C21—C20—H20126.9
C21—Fe2—C2465.5 (5)Fe2—C20—H20123.9
C23—Fe2—C18123.9 (5)C20—C21—C22109.3 (12)
C20—Fe2—C18161.4 (6)C20—C21—Fe269.9 (7)
C19—Fe2—C1840.4 (4)C22—C21—Fe269.9 (7)
C22—Fe2—C18110.0 (5)C20—C21—H21125.3
C21—Fe2—C18126.6 (5)C22—C21—H21125.3
C24—Fe2—C18158.3 (6)Fe2—C21—H21126.4
C23—Fe2—C15125.3 (5)C21—C22—C23106.3 (12)
C20—Fe2—C15120.2 (5)C21—C22—Fe270.0 (7)
C19—Fe2—C1541.0 (4)C23—C22—Fe269.5 (7)
C22—Fe2—C15162.3 (5)C21—C22—H22126.8
C21—Fe2—C15155.5 (5)C23—C22—H22126.8
C24—Fe2—C15108.8 (5)Fe2—C22—H22125.2
C18—Fe2—C1567.7 (4)C24—C23—C22107.9 (13)
C23—Fe2—C16161.1 (5)C24—C23—Fe271.0 (7)
C20—Fe2—C16106.7 (5)C22—C23—Fe270.3 (7)
C19—Fe2—C1668.7 (5)C24—C23—H23126.1
C22—Fe2—C16156.2 (6)C22—C23—H23126.1
C21—Fe2—C16121.0 (5)Fe2—C23—H23124.2
C24—Fe2—C16124.9 (5)C23—C24—C20110.2 (13)
C18—Fe2—C1667.4 (5)C23—C24—Fe269.7 (7)
C15—Fe2—C1640.7 (4)C20—C24—Fe269.9 (7)
C23—Fe2—C17157.2 (5)C23—C24—H24124.9
C20—Fe2—C17123.3 (5)C20—C24—H24124.9
C19—Fe2—C1769.7 (5)Fe2—C24—H24127.1
C22—Fe2—C17120.9 (5)C30—C25—C26120.5 (9)
C21—Fe2—C17107.3 (5)C30—C25—Sb1120.1 (7)
C24—Fe2—C17160.3 (5)C26—C25—Sb1119.5 (7)
C18—Fe2—C1740.6 (4)C27—C26—C25117.6 (10)
C15—Fe2—C1769.6 (5)C27—C26—H26121.2
C16—Fe2—C1741.2 (4)C25—C26—H26121.2
C2—N1—O1111.6 (8)C28—C27—C26121.6 (11)
C14—N2—O2110.3 (7)C28—C27—H27119.2
N1—O1—Sb1110.7 (5)C26—C27—H27119.2
N2—O2—Sb1111.3 (5)C29—C28—C27120.7 (11)
C2—C1—H1A109.5C29—C28—H28119.7
C2—C1—H1B109.5C27—C28—H28119.7
H1A—C1—H1B109.5C28—C29—C30120.8 (11)
C2—C1—H1C109.5C28—C29—H29119.6
H1A—C1—H1C109.5C30—C29—H29119.6
H1B—C1—H1C109.5C29—C30—C25118.8 (10)
N1—C2—C3116.1 (11)C29—C30—H30120.6
N1—C2—C1124.4 (10)C25—C30—H30120.6
C3—C2—C1119.4 (10)C36—C31—C32116.2 (10)
C4—C3—C7107.0 (9)C36—C31—Sb1121.0 (7)
C4—C3—C2125.3 (10)C32—C31—Sb1122.2 (7)
C7—C3—C2127.3 (11)C31—C32—C33119.1 (10)
C4—C3—Fe168.4 (6)C31—C32—H32120.5
C7—C3—Fe167.1 (6)C33—C32—H32120.5
C2—C3—Fe1123.8 (7)C34—C33—C32120.6 (11)
C3—C4—C5107.6 (10)C34—C33—H33119.7
C3—C4—Fe171.5 (6)C32—C33—H33119.7
C5—C4—Fe169.5 (6)C35—C34—C33119.6 (13)
C3—C4—H4126.2C35—C34—H34120.2
C5—C4—H4126.2C33—C34—H34120.2
Fe1—C4—H4124.4C34—C35—C36121.7 (11)
C6—C5—C4110.1 (12)C34—C35—H35119.2
C6—C5—Fe170.6 (7)C36—C35—H35119.2
C4—C5—Fe168.9 (6)C35—C36—C31122.7 (11)
C6—C5—H5125.0C35—C36—H36118.7
C4—C5—H5125.0C31—C36—H36118.7
Fe1—C5—H5127.1C38—C37—C42118.6 (10)
C5—C6—C7108.8 (11)C38—C37—Sb1121.3 (8)
C5—C6—Fe170.6 (7)C42—C37—Sb1120.0 (9)
C7—C6—Fe168.6 (6)C37—C38—C39119.5 (11)
C5—C6—H6125.6C37—C38—H38120.3
C7—C6—H6125.6C39—C38—H38120.3
Fe1—C6—H6126.8C40—C39—C38120.2 (13)
C6—C7—C3106.4 (11)C40—C39—H39119.9
C6—C7—Fe169.8 (7)C38—C39—H39119.9
C3—C7—Fe170.7 (6)C39—C40—C41122.0 (12)
C6—C7—H7126.8C39—C40—H40119.0
C3—C7—H7126.8C41—C40—H40119.0
Fe1—C7—H7124.3C42—C41—C40118.5 (11)
C9—C8—C12110.9 (13)C42—C41—H41120.8
C9—C8—Fe170.1 (7)C40—C41—H41120.8
C12—C8—Fe170.2 (7)C41—C42—C37121.0 (11)
C9—C8—H8124.5C41—C42—H42119.5
C12—C8—H8124.5C37—C42—H42119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.783.677 (4)163
C21—H21···Cg2ii0.933.033.751 (3)136
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Fe2Sb(C5H5)2(C6H5)3(C7H7NO)2]
Mr837.20
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)19.921 (2), 19.938 (2), 9.371 (1)
V3)3722.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.42 × 0.36 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.566, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
15019, 6305, 4319
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 0.95
No. of reflections6305
No. of parameters442
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.38
Absolute structureFlack (1983), 2803 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: SMART (Bruker 1998), SAINT (Bruker 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.783.677 (4)162.7
C21—H21···Cg2ii0.933.033.751 (3)136.0
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x+1, y+1, z1/2.
 

Acknowledgements

The author acknowledges the financial support of Qingdao University of Science and Technology

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSharma, N., Jain, A. K., Sharma, R. K., Bohra, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2003). Polyhedron, pp. 2943–2946.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, S., Sato, H., Kubota, Y., Utsumi, H., Bedford, J. S. & Okayasu, R. (2002). Toxicology, 180, 249–256.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds