organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-chloro­phenyl­seleno)-2,5-di­meth­oxy­benzene

aCenter for Fundamental Research: Metal Structures in Four Dimensions, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, PO 49, DK-4000 Roskilde, Denmark, and bDepartment of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
*Correspondence e-mail: henning.sorensen@risoe.dk

(Received 27 October 2008; accepted 24 November 2008; online 3 December 2008)

The title compound, C20H16Cl2O2Se2, utilizes the symmetry of the crystallographic inversion center. Mol­ecular chains are formed through symmetric C—H⋯Cl inter­actions around inversion centers, mimicking the commonly observed symmetric hydrogen-bonded dimer pattern often found in carboxylic acids.

Related literature

For background to the electrophilic aryl­selenylation of reactive arenes, see: Santi et al. (2008[Santi, C., Tiecco, M., Testaferri, L., Tomassini, C., Santoro, S. & Bizzoca, G. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 956-960.]); Nicolaou et al. (1979[Nicolaou, K. C., Claremon, D. A., Barnette, W. E. & Seits, S. P. (1979). J. Am. Chem. Soc. 101, 3704-3706.]); Gassman et al. (1982[Gassman, P. G., Miura, A. & Miura, T. (1982). J. Org. Chem. 47, 951-954.]); Yoshida et al. (1991[Yoshida, M., Sasage, S., Kawamura, K., Suzuki, T. & Kamigata, N. (1991). Bull. Chem. Soc. Jpn, 64, 416-422.]); Tiecco et al. (1994[Tiecco, M., Testaferri, L., Tingoli, M., Marini, F. & Mariggio, S. (1994). Tetrahedron, 50, 10549-10554.]); Engman & Eriksson (1996[Engman, L. & Eriksson, P. (1996). Heterocycles, 43, 861-871.]); Henriksen (1994[Henriksen, L. (1994). Tetrahedron Lett. 35, 7057-7060.]); Henriksen & Stuhr-Hansen (1998[Henriksen, L. & Stuhr-Hansen, N. (1998). Phosphorus Sulfur Silicon Relat. Elem. 136-138, 175-190.]). For related structures, see: Oddershede et al. (2003[Oddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053-1060.]). For related supra­molecular patterns, see: Gavezzotti & Filippini (1994[Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831-4837.]); Allen et al. (1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]); Sørensen & Larsen (2003[Sørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132-140.]); Sørensen et al. (1999[Sørensen, H. O., Collet, A. & Larsen, S. (1999). Acta Cryst. C55, 953-956.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16Cl2O2Se2

  • Mr = 517.15

  • Monoclinic, P 21 /n

  • a = 11.7737 (17) Å

  • b = 6.6535 (6) Å

  • c = 13.438 (5) Å

  • β = 114.136 (16)°

  • V = 960.7 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 7.47 mm−1

  • T = 122 (1) K

  • 0.44 × 0.15 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: gaussian (DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]). Tmin = 0.242, Tmax = 0.796

  • 2641 measured reflections

  • 1976 independent reflections

  • 1919 reflections with I > 2σ(I)

  • Rint = 0.030

  • 5 standard reflections frequency: 166.7 min intensity decay: 5.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.10

  • 1976 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.20 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, shown in Fig. 1, crystallized in space group P 21/n utilizing the crystallography inversion center in the molecular symmetry. Generally the molecular geometry of 1 is in close agreement with the related compound 1,3-dimethoxy-4,6-bis(phenylseleno)benzene, hereafter DMPSB. All bond distances and angles are the same within the experimental uncertainty. The molecular conformation of 1 is also very similar to the chloro-unsubstituted compound DMPSB having the planes of phenylseleno groups arranged perpendicular to the plane of the central benzene moiety, but rotated in opposite directions forming a Z like conformation (Fig. 1). Leading to the formation of intramolecular Car—H···π interactions.

The molecular packing arrangement is dominated by molecular chains (see Fig. 2) formed by cyclic Car—H···Cl interactions [H7···Cli = 2.96 Å, C7—H7···Cli = 166.0°; symmetry code: (i) 2 - x,1 - y,1 - z] around an inversion center leading to a pattern, which highly resembles the cyclic hydrogen-bonded dimers frequently observed in carboxylic acids. The Car—H···Cl type of cyclic interaction found in 1 has also been observed in other compounds having a p-chlorosubstituted phenyl group, e.g. in the structure of racemic p-chlorophenoxypropionic acid, where the distance H···Cl is 2.92 Å [C—H···Cl 175°]. The chains are stacked such that the π-π interactions between the phenelseleno groups and between the benzene rings along the diagonal of the b and c-axes, respectively. Due to the chain formation in 1 the packing arrangement is rather different from the pattern found in DMPSB, where interactions with chlorine cannot be formed.

Related literature top

For background to the electrophilic arylselenylation of reactive arenes, see: Santi et al. (2008); Nicolaou et al. (1979); Gassman et al. (1982); Yoshida et al. (1991); Tiecco et al. (1994); Engman & Eriksson (1996); Henriksen (1994); Henriksen & Stuhr-Hansen (1998). For related structures, see: Oddershede et al. (2003). For related supramolecular patterns, see: Gavezzotti & Filippini (1994); Allen et al. (1999); Sørensen & Larsen (2003); Sørensen et al. (1999).

Experimental top

Crystals suitable for an X-ray diffraction experiment were obtained by slow crystallization from hot toluene.

Refinement top

Hydrogen atoms of (1) were found in the difference Fourier map. All hydrogen atoms were treated as riding atoms with C—H distances of 0.95 for Car and 0.98 for the CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-hydrogen atom (1.5Ueq for Me groups).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal elipsoid plot of (1) including labelling of the atoms. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with an arbitrary radii.
[Figure 2] Fig. 2. A view of the cyclic C—H···Cl interactions linking the molecules into a chain.
[Figure 3] Fig. 3. Packing diagram of viewed down the b axis.
1,4-Bis(4-chlorophenylseleno)-2,5-dimethoxybenzene top
Crystal data top
C20H16Cl2O2Se2F(000) = 508
Mr = 517.15Dx = 1.788 Mg m3
Monoclinic, P21/nMelting point: 193 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 11.7737 (17) ÅCell parameters from 20 reflections
b = 6.6535 (6) Åθ = 39.3–40.7°
c = 13.438 (5) ŵ = 7.47 mm1
β = 114.136 (16)°T = 122 K
V = 960.7 (4) Å3Block, white
Z = 20.44 × 0.15 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 74.9°, θmin = 4.2°
ω–2θ scansh = 1414
Absorption correction: gaussian
(DeTitta, 1985).
k = 78
Tmin = 0.242, Tmax = 0.796l = 016
2641 measured reflections5 standard reflections every 166.7 min
1976 independent reflections intensity decay: 5.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.9774P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1976 reflectionsΔρmax = 0.60 e Å3
119 parametersΔρmin = 1.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (3)
Crystal data top
C20H16Cl2O2Se2V = 960.7 (4) Å3
Mr = 517.15Z = 2
Monoclinic, P21/nCu Kα radiation
a = 11.7737 (17) ŵ = 7.47 mm1
b = 6.6535 (6) ÅT = 122 K
c = 13.438 (5) Å0.44 × 0.15 × 0.13 mm
β = 114.136 (16)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1919 reflections with I > 2σ(I)
Absorption correction: gaussian
(DeTitta, 1985).
Rint = 0.030
Tmin = 0.242, Tmax = 0.7965 standard reflections every 166.7 min
2641 measured reflections intensity decay: 5.7%
1976 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.10Δρmax = 0.60 e Å3
1976 reflectionsΔρmin = 1.20 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.745362 (19)0.19839 (3)0.007848 (17)0.01812 (12)
Cl1.00097 (5)0.82041 (8)0.40315 (5)0.02427 (15)
O11.23891 (13)0.1213 (2)0.13084 (12)0.0192 (3)
C11.2567 (2)0.2869 (3)0.20396 (19)0.0232 (5)
H1A1.34590.31400.24310.035*
H1B1.22130.25350.25640.035*
H1C1.21500.40630.16230.035*
C21.11846 (19)0.0668 (3)0.06767 (16)0.0160 (4)
C31.0144 (2)0.1577 (3)0.07253 (17)0.0168 (4)
H31.02450.26530.12190.020*
C40.89557 (19)0.0910 (3)0.00514 (16)0.0159 (4)
C50.82080 (19)0.3830 (3)0.12694 (17)0.0172 (4)
C60.8614 (2)0.3181 (3)0.23448 (19)0.0194 (4)
H60.85060.18150.24930.023*
C70.9173 (2)0.4513 (3)0.32023 (17)0.0197 (4)
H70.94570.40670.39360.024*
C80.93109 (19)0.6504 (3)0.29699 (17)0.0174 (4)
C90.8891 (2)0.7196 (3)0.19057 (19)0.0211 (5)
H90.89850.85700.17620.025*
C100.8331 (2)0.5850 (3)0.10537 (17)0.0201 (4)
H100.80300.63080.03210.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01674 (16)0.01956 (17)0.01817 (16)0.00021 (7)0.00723 (11)0.00363 (7)
Cl0.0267 (3)0.0243 (3)0.0206 (3)0.0041 (2)0.0084 (2)0.00601 (18)
O10.0174 (7)0.0196 (7)0.0194 (7)0.0023 (6)0.0063 (6)0.0059 (6)
C10.0242 (11)0.0227 (11)0.0217 (11)0.0045 (9)0.0084 (9)0.0084 (8)
C20.0178 (9)0.0154 (9)0.0145 (9)0.0025 (8)0.0064 (7)0.0012 (7)
C30.0215 (10)0.0136 (9)0.0164 (9)0.0016 (8)0.0089 (8)0.0014 (7)
C40.0192 (9)0.0143 (9)0.0156 (9)0.0004 (7)0.0084 (8)0.0013 (7)
C50.0169 (9)0.0178 (10)0.0196 (10)0.0013 (8)0.0103 (8)0.0016 (8)
C60.0211 (10)0.0160 (10)0.0216 (11)0.0022 (8)0.0091 (9)0.0024 (8)
C70.0208 (10)0.0215 (11)0.0170 (9)0.0033 (8)0.0080 (8)0.0037 (8)
C80.0169 (9)0.0173 (10)0.0189 (10)0.0001 (8)0.0080 (8)0.0038 (8)
C90.0255 (11)0.0163 (10)0.0213 (11)0.0001 (8)0.0093 (9)0.0018 (8)
C100.0245 (11)0.0196 (10)0.0170 (10)0.0017 (8)0.0093 (8)0.0031 (8)
Geometric parameters (Å, º) top
Se1—C41.921 (2)C4—C2i1.398 (3)
Se1—C51.923 (2)C5—C61.393 (3)
Cl—C81.741 (2)C5—C101.395 (3)
O1—C21.371 (2)C6—C71.388 (3)
O1—C11.433 (2)C6—H60.9500
C1—H1A0.9800C7—C81.386 (3)
C1—H1B0.9800C7—H70.9500
C1—H1C0.9800C8—C91.387 (3)
C2—C31.391 (3)C9—C101.389 (3)
C2—C4i1.398 (3)C9—H90.9500
C3—C41.392 (3)C10—H100.9500
C3—H30.9500
C4—Se1—C597.92 (9)C6—C5—Se1120.74 (16)
C2—O1—C1116.88 (17)C10—C5—Se1119.64 (16)
O1—C1—H1A109.5C7—C6—C5120.6 (2)
O1—C1—H1B109.5C7—C6—H6119.7
H1A—C1—H1B109.5C5—C6—H6119.7
O1—C1—H1C109.5C8—C7—C6118.9 (2)
H1A—C1—H1C109.5C8—C7—H7120.6
H1B—C1—H1C109.5C6—C7—H7120.6
O1—C2—C3124.29 (19)C7—C8—C9121.7 (2)
O1—C2—C4i115.37 (18)C7—C8—Cl119.75 (17)
C3—C2—C4i120.34 (19)C9—C8—Cl118.60 (17)
C2—C3—C4120.07 (19)C8—C9—C10119.0 (2)
C2—C3—H3120.0C8—C9—H9120.5
C4—C3—H3120.0C10—C9—H9120.5
C3—C4—C2i119.60 (19)C9—C10—C5120.3 (2)
C3—C4—Se1123.88 (16)C9—C10—H10119.9
C2i—C4—Se1116.50 (15)C5—C10—H10119.9
C6—C5—C10119.6 (2)
C1—O1—C2—C31.8 (3)C10—C5—C6—C72.0 (3)
C1—O1—C2—C4i178.06 (18)Se1—C5—C6—C7179.10 (16)
O1—C2—C3—C4179.78 (19)C5—C6—C7—C80.6 (3)
C4i—C2—C3—C40.4 (3)C6—C7—C8—C90.8 (3)
C2—C3—C4—C2i0.4 (3)C6—C7—C8—Cl179.98 (16)
C2—C3—C4—Se1177.83 (15)C7—C8—C9—C100.7 (3)
C5—Se1—C4—C33.27 (19)Cl—C8—C9—C10179.91 (17)
C5—Se1—C4—C2i174.97 (16)C8—C9—C10—C50.8 (3)
C4—Se1—C5—C683.67 (18)C6—C5—C10—C92.1 (3)
C4—Se1—C5—C1097.46 (18)Se1—C5—C10—C9179.02 (17)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC20H16Cl2O2Se2
Mr517.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)122
a, b, c (Å)11.7737 (17), 6.6535 (6), 13.438 (5)
β (°) 114.136 (16)
V3)960.7 (4)
Z2
Radiation typeCu Kα
µ (mm1)7.47
Crystal size (mm)0.44 × 0.15 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionGaussian
(DeTitta, 1985).
Tmin, Tmax0.242, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
2641, 1976, 1919
Rint0.030
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.10
No. of reflections1976
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 1.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

The authors thank Flemming Hansen, Centre of Crystallographic Studies, University of Copenhagen, for obtaining the crystallographic data. The Danish National Research Foundation is acknowledged for supporting the Center for Fundamental Research: Metal Structures in Four Dimensions.

References

First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEngman, L. & Eriksson, P. (1996). Heterocycles, 43, 861–871.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGassman, P. G., Miura, A. & Miura, T. (1982). J. Org. Chem. 47, 951–954.  CrossRef CAS Web of Science Google Scholar
First citationGavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831–4837.  CrossRef CAS Web of Science Google Scholar
First citationHenriksen, L. (1994). Tetrahedron Lett. 35, 7057–7060.  CrossRef CAS Web of Science Google Scholar
First citationHenriksen, L. & Stuhr-Hansen, N. (1998). Phosphorus Sulfur Silicon Relat. Elem. 136–138, 175–190.  Google Scholar
First citationNicolaou, K. C., Claremon, D. A., Barnette, W. E. & Seits, S. P. (1979). J. Am. Chem. Soc. 101, 3704–3706.  CrossRef CAS Web of Science Google Scholar
First citationOddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053–1060.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSanti, C., Tiecco, M., Testaferri, L., Tomassini, C., Santoro, S. & Bizzoca, G. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 956–960.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O., Collet, A. & Larsen, S. (1999). Acta Cryst. C55, 953–956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132–140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiecco, M., Testaferri, L., Tingoli, M., Marini, F. & Mariggio, S. (1994). Tetrahedron, 50, 10549–10554.  CrossRef CAS Web of Science Google Scholar
First citationYoshida, M., Sasage, S., Kawamura, K., Suzuki, T. & Kamigata, N. (1991). Bull. Chem. Soc. Jpn, 64, 416–422.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds