metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m48-m49

Aqua­bis­(2,2′-bi­pyridine-κ2N,N′)(1H-indole-2-carboxyl­ato-κO)nickel(II) 1H-indole-2-carboxyl­ate dihydrate

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 27 November 2008; accepted 7 December 2008; online 13 December 2008)

The hydro­thermal reaction of Ni2(OH)2CO3 with 2,2′-bipyridine and 2-indolyl-formic acid in CH3OH/H2O at 423 K for 7 d produced the novel NiII complex [Ni(C9H6NO2)(C10H8N2)2(H2O)](C9H6NO2)·2H2O. The asymmetric unit of the title compound consists of a monovalent [Ni(L)(bpy)2(H2O)]+ cation (bpy is 2,2′-bipyridine and L is 1H-indole-2-carboxyl­ate), an L anion and two solvent water mol­ecules. In the [Ni(L)(bpy)2(H2O)]+ cations, the Ni atom coordinates to four N atoms from the two bpy ligands and two O atoms, one from a L anion and the other from a water mol­ecule to complete an significantly distorted NiN4O2 octa­hedron. The coordinated and solvate water mol­ecules form an extensive series of O—H⋯O hydrogen bonds. N—H⋯O and C—H⋯O hydrogen bonds are also present and the mol­ecules are inter­linked, forming a three-dimensional network.

Related literature

For other complexes of the 1H-indole-2-carboxyl­ate ligand, see: Lou & Zhang (2007[Lou, Q.-Z. & Zhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 199-201.]); Zhang & Ying (2005[Zhang, B.-S. & Ying, T.-K. (2005). Chin. J. Inorg. Chem. 21, 515-518.]). For related structures, see: Zhang (2004[Zhang, B.-S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 483-484.], 2005[Zhang, B.-S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 73-74.], 2006a[Zhang, B.-S. (2006a). Acta Cryst. E62, m2645-m2647.],b[Zhang, B.-S. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 191-194.],c[Zhang, B. S. (2006c). Z. Kristallogr. New Cryst. Struct. 221, 355-356.]); Zhang et al. (2005[Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. & Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 211-212.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H6NO2)(C10H8N2)2(H2O)](C9H6NO2)·2H2O

  • Mr = 745.42

  • Triclinic, [P \overline 1]

  • a = 12.499 (8) Å

  • b = 13.128 (9) Å

  • c = 13.477 (9) Å

  • α = 95.389 (9)°

  • β = 114.166 (9)°

  • γ = 117.804 (8)°

  • V = 1669.7 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 (2) K

  • 0.40 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.920

  • 9411 measured reflections

  • 6750 independent reflections

  • 5675 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 1.07

  • 6750 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.82 1.89 2.647 (3) 154.0
O2—H2A⋯O5 0.82 1.91 2.732 (4) 178.3
O2—H2B⋯O4 0.82 2.10 2.885 (4) 161.7
O7—H7A⋯O5 0.81 2.42 2.994 (4) 129.0
N6—HN6⋯O6i 0.86 1.99 2.814 (3) 159.0
O1—H1B⋯O6ii 0.82 1.93 2.750 (3) 174.2
O1—H1B⋯O5ii 0.82 2.60 3.166 (3) 127.6
C4—H4⋯O2iii 0.93 2.54 3.400 (5) 155
C14—H14⋯O7iv 0.93 2.41 3.320 (4) 167
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have prepared the title complex, [Ni(H2O)(bpy)2(L)].L.2H2O [bpy = 2,2'-bipyridine, HL = 2-indolyl-formic acid] (I), and report its crystal structure here, Fig. 1. The title compound has a structure similar to those of complexes of halobenzoate ligands, X—C6H4COO-, where X is F,Cl,Br and I, (Zhang, 2004, 2005, 2006a,b,c; Zhang et al., 2005).

The asymmetric unit of the title compound consists of a [Ni(H2O)(bpy)2(L)]+ cation, a 1H-indole-2-carboxylate anion and two solvent water molecules (Fig.1). In the cation, the Ni(1) atom is coordinated by four N atoms from two 2,2'-bipyridine ligands and two O atoms, one from a 1H-indole-2-carboxylate anion and the other from a water molecule to complete a significantly distorted NiN4O2 octahedron. The Ni—N bond lengths are in the range 2.066 (2) to 2.097 (2) Å, with Ni—O distances 2.075 (2)Å and 2.080 (2)Å, Table 1.

The coordinated and solvate water molecules show extensive hydrogen bonding to the carboxylate O atoms of 2-indolyl-formic acid anions, Table 2. An N6—HN6···O6 hydrogen bond also forms. In addition, weak C—H···O hydrogen bonds form between the O atoms of solvate water molecules and the H atoms of the 2,2'-bipyridine ligands. A combination of these strong and weak hydrogen bonding interactions link the molecules into a three-dimensional network, Fig 2.

Related literature top

For other complexes of the 1H-indole-2-carboxylate ligand, see: Lou & Zhang (2007); Zhang & Ying (2005). For related structures, see: Zhang (2004, 2005, 2006a,b,c); Zhang et al. (2005).

Experimental top

Ni2(OH)2CO3 (0.12 g 0.57 mmol), 2,2'-bpy (0.04 g 0.26 mmol),2-indolyl- formic acid (0.06 g 0.37 mmol),15 ml CH3OH/H2O (1:2, v/v) were mixed and stirred for ca3.5 h., the resulting suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 423 K for 7 days. After the autoclave cooled to room temperature, the solid was filtered off. The resulting pink filtrate was allowed to stand at room temperature and slow evaporation over two weeks gave brown block-like crystals suitable for X-ray analysis.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C),and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with O—H distance restraints of 0.82 (1) Å and Uiso(H) = 1.5Ueq(O). The highest residual electron density was 1.04Å and the deepest hole 0.89Å from atom Ni1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title complex, viewed along the c axis (the H atoms have been omitted). Hydrogen bonds are drawn as dashed lines.
Aquabis(2,2'-bipyridine-k2N,N')(1H-indole-2-carboxylato-κO)nickel(II) 1H-indole-2-carboxylate dihydrate top
Crystal data top
[Ni(C9H6NO2)(C10H8N2)2(H2O)](C9H6NO2)·2H2OZ = 2
Mr = 745.42F(000) = 776
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.499 (8) ÅCell parameters from 238 reflections
b = 13.128 (9) Åθ = 1.9–26.0°
c = 13.477 (9) ŵ = 0.64 mm1
α = 95.389 (9)°T = 293 K
β = 114.166 (9)°Block, brown
γ = 117.804 (8)°0.40 × 0.21 × 0.13 mm
V = 1669.7 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6750 independent reflections
Radiation source: fine-focus sealed tube5675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.848, Tmax = 0.920k = 1416
9411 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.1085P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.005
6750 reflectionsΔρmax = 1.23 e Å3
470 parametersΔρmin = 0.88 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (13)
Crystal data top
[Ni(C9H6NO2)(C10H8N2)2(H2O)](C9H6NO2)·2H2Oγ = 117.804 (8)°
Mr = 745.42V = 1669.7 (19) Å3
Triclinic, P1Z = 2
a = 12.499 (8) ÅMo Kα radiation
b = 13.128 (9) ŵ = 0.64 mm1
c = 13.477 (9) ÅT = 293 K
α = 95.389 (9)°0.40 × 0.21 × 0.13 mm
β = 114.166 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6750 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5675 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.920Rint = 0.026
9411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 1.23 e Å3
6750 reflectionsΔρmin = 0.88 e Å3
470 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.04771 (3)0.33215 (2)0.29047 (2)0.02858 (13)
N10.1702 (2)0.52501 (17)0.35544 (16)0.0333 (4)
N20.2419 (2)0.37219 (18)0.31901 (17)0.0336 (4)
N30.0299 (2)0.33007 (17)0.11931 (16)0.0322 (4)
N40.1395 (2)0.31369 (17)0.25242 (16)0.0321 (4)
N50.1344 (2)0.18354 (19)0.67095 (17)0.0420 (5)
HN50.10150.10870.63500.050*
N60.5831 (2)0.01927 (17)0.89144 (16)0.0326 (4)
HN60.58800.01820.95680.039*
O10.04967 (16)0.14307 (14)0.22692 (13)0.0349 (4)
H1A0.03150.11990.28250.052*
H1B0.13570.10100.19550.052*
O20.2771 (4)0.0847 (4)0.5299 (3)0.1255 (14)
H2A0.27980.07140.58890.188*
H2B0.23400.11780.51260.188*
O30.09785 (19)0.32891 (16)0.45695 (14)0.0403 (4)
O40.0692 (2)0.14428 (18)0.44129 (15)0.0512 (5)
O50.2852 (2)0.0358 (2)0.72467 (18)0.0577 (5)
O60.33868 (18)0.01581 (16)0.88179 (15)0.0408 (4)
O70.4874 (3)0.3091 (2)0.8106 (3)0.0908 (9)
H7B0.53980.37700.80900.136*
H7A0.44390.24780.75420.136*
C10.1267 (3)0.5974 (2)0.3726 (2)0.0416 (6)
H10.03430.56050.35610.050*
C20.2134 (3)0.7250 (2)0.4139 (2)0.0479 (6)
H20.18040.77290.42550.058*
C30.3493 (3)0.7785 (2)0.4372 (2)0.0497 (7)
H30.40980.86380.46520.060*
C40.3965 (3)0.7059 (2)0.4189 (2)0.0456 (6)
H40.48830.74150.43430.055*
C50.3036 (2)0.5785 (2)0.37713 (19)0.0350 (5)
C60.3433 (2)0.4923 (2)0.35529 (19)0.0338 (5)
C70.4745 (3)0.5295 (3)0.3708 (2)0.0458 (6)
H70.54280.61260.39380.055*
C80.5028 (3)0.4418 (3)0.3517 (3)0.0520 (7)
H80.59070.46520.36260.062*
C90.3989 (3)0.3189 (3)0.3161 (2)0.0476 (6)
H90.41560.25830.30320.057*
C100.2701 (3)0.2880 (2)0.3001 (2)0.0415 (6)
H100.19970.20530.27520.050*
C110.0317 (3)0.3393 (2)0.0559 (2)0.0423 (6)
H110.11700.34560.08880.051*
C120.0259 (3)0.3397 (3)0.0549 (2)0.0495 (7)
H120.01930.34580.09650.059*
C130.1513 (3)0.3311 (2)0.1035 (2)0.0506 (7)
H130.19220.33130.17870.061*
C140.2165 (3)0.3221 (2)0.0404 (2)0.0424 (6)
H140.30050.31810.07160.051*
C150.1548 (2)0.31915 (19)0.07050 (19)0.0328 (5)
C160.2200 (2)0.30411 (18)0.14345 (19)0.0313 (5)
C170.3542 (2)0.2789 (2)0.1037 (2)0.0399 (5)
H170.40960.26970.02750.048*
C180.4041 (3)0.2679 (2)0.1790 (3)0.0471 (6)
H180.49370.25130.15420.057*
C190.3208 (3)0.2816 (2)0.2905 (3)0.0443 (6)
H190.35180.27670.34290.053*
C200.1910 (3)0.3025 (2)0.3239 (2)0.0383 (5)
H200.13610.30940.39920.046*
C210.1409 (3)0.2719 (2)0.6209 (2)0.0379 (5)
C220.1981 (3)0.3790 (2)0.7048 (2)0.0408 (6)
H220.21280.45210.69360.049*
C230.2310 (3)0.3590 (2)0.8116 (2)0.0370 (5)
C240.1892 (3)0.2352 (2)0.7879 (2)0.0366 (5)
C250.2055 (3)0.1829 (2)0.8741 (2)0.0444 (6)
H250.17650.10080.85690.053*
C260.2667 (3)0.2583 (2)0.9862 (2)0.0446 (6)
H260.27800.22601.04550.054*
C270.3118 (3)0.3818 (3)1.0123 (2)0.0488 (7)
H270.35350.43021.08880.059*
C280.2961 (3)0.4334 (2)0.9277 (2)0.0502 (7)
H280.32790.51610.94660.060*
C290.0993 (2)0.2451 (2)0.4966 (2)0.0387 (5)
C300.4817 (2)0.0220 (2)0.8002 (2)0.0342 (5)
C310.5085 (3)0.0230 (2)0.7109 (2)0.0374 (5)
H310.45620.02530.63940.045*
C320.6304 (2)0.0198 (2)0.7472 (2)0.0336 (5)
C330.7085 (3)0.0185 (2)0.6963 (2)0.0384 (5)
H330.67910.01580.62000.046*
C340.8288 (3)0.0215 (2)0.7610 (2)0.0437 (6)
H340.88240.02340.72860.052*
C350.8722 (3)0.0216 (2)0.8743 (2)0.0443 (6)
H350.95350.02270.91550.053*
C360.7973 (3)0.0202 (2)0.9269 (2)0.0381 (5)
H360.82640.02031.00240.046*
C370.6758 (2)0.01867 (19)0.86157 (19)0.0328 (5)
C380.3603 (2)0.0142 (2)0.8030 (2)0.0356 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02652 (19)0.03213 (19)0.02880 (18)0.01791 (14)0.01357 (14)0.01124 (12)
N10.0342 (10)0.0333 (10)0.0309 (10)0.0188 (8)0.0158 (8)0.0108 (7)
N20.0290 (10)0.0372 (10)0.0348 (10)0.0210 (8)0.0138 (8)0.0114 (8)
N30.0321 (10)0.0344 (10)0.0294 (9)0.0188 (8)0.0150 (8)0.0111 (7)
N40.0333 (10)0.0339 (10)0.0329 (10)0.0210 (8)0.0171 (8)0.0126 (8)
N50.0545 (13)0.0401 (11)0.0338 (10)0.0288 (10)0.0214 (10)0.0148 (8)
N60.0334 (10)0.0351 (10)0.0319 (10)0.0193 (8)0.0183 (8)0.0126 (8)
O10.0324 (8)0.0352 (8)0.0332 (8)0.0176 (7)0.0150 (7)0.0125 (7)
O20.133 (3)0.273 (5)0.095 (2)0.164 (3)0.087 (2)0.116 (3)
O30.0456 (10)0.0482 (10)0.0321 (9)0.0296 (8)0.0186 (8)0.0192 (7)
O40.0678 (13)0.0569 (12)0.0365 (9)0.0437 (10)0.0216 (9)0.0195 (8)
O50.0598 (13)0.0922 (15)0.0621 (13)0.0577 (12)0.0414 (11)0.0479 (12)
O60.0356 (9)0.0513 (10)0.0395 (9)0.0242 (8)0.0220 (8)0.0185 (8)
O70.0528 (14)0.0629 (15)0.121 (2)0.0271 (12)0.0237 (15)0.0274 (14)
C10.0440 (14)0.0406 (13)0.0456 (14)0.0257 (11)0.0250 (12)0.0146 (11)
C20.0625 (18)0.0416 (14)0.0484 (15)0.0330 (13)0.0306 (14)0.0159 (11)
C30.0553 (17)0.0321 (13)0.0458 (15)0.0180 (12)0.0213 (13)0.0111 (11)
C40.0391 (14)0.0378 (13)0.0452 (14)0.0158 (11)0.0168 (11)0.0137 (11)
C50.0334 (12)0.0370 (12)0.0298 (11)0.0178 (10)0.0141 (9)0.0130 (9)
C60.0273 (11)0.0415 (12)0.0303 (11)0.0186 (10)0.0133 (9)0.0140 (9)
C70.0333 (13)0.0511 (15)0.0488 (15)0.0204 (11)0.0215 (11)0.0173 (12)
C80.0372 (14)0.074 (2)0.0561 (17)0.0350 (14)0.0279 (13)0.0258 (14)
C90.0466 (15)0.0642 (18)0.0526 (16)0.0412 (14)0.0289 (13)0.0236 (13)
C100.0399 (14)0.0441 (14)0.0482 (14)0.0275 (11)0.0241 (12)0.0159 (11)
C110.0426 (14)0.0480 (14)0.0399 (13)0.0246 (11)0.0247 (11)0.0161 (11)
C120.0605 (18)0.0504 (15)0.0391 (14)0.0270 (14)0.0310 (13)0.0177 (11)
C130.0613 (18)0.0483 (15)0.0306 (13)0.0262 (13)0.0193 (12)0.0146 (11)
C140.0433 (14)0.0420 (13)0.0349 (12)0.0245 (11)0.0134 (11)0.0152 (10)
C150.0334 (12)0.0252 (10)0.0311 (11)0.0152 (9)0.0115 (9)0.0076 (8)
C160.0297 (11)0.0246 (10)0.0341 (11)0.0160 (9)0.0116 (9)0.0082 (8)
C170.0323 (12)0.0362 (12)0.0471 (14)0.0219 (10)0.0140 (10)0.0135 (10)
C180.0362 (13)0.0454 (14)0.0689 (18)0.0275 (12)0.0284 (13)0.0214 (13)
C190.0453 (15)0.0446 (14)0.0620 (17)0.0295 (12)0.0360 (13)0.0241 (12)
C200.0424 (14)0.0424 (13)0.0427 (13)0.0274 (11)0.0264 (11)0.0193 (10)
C210.0368 (13)0.0466 (14)0.0369 (12)0.0256 (11)0.0201 (10)0.0202 (10)
C220.0475 (14)0.0416 (13)0.0451 (14)0.0286 (12)0.0271 (12)0.0228 (11)
C230.0390 (13)0.0388 (12)0.0398 (13)0.0245 (10)0.0217 (11)0.0160 (10)
C240.0401 (13)0.0420 (13)0.0315 (11)0.0253 (11)0.0181 (10)0.0147 (9)
C250.0593 (17)0.0445 (14)0.0401 (13)0.0344 (13)0.0263 (12)0.0211 (11)
C260.0509 (16)0.0561 (16)0.0374 (13)0.0348 (13)0.0236 (12)0.0238 (11)
C270.0549 (17)0.0533 (16)0.0342 (13)0.0288 (13)0.0220 (12)0.0121 (11)
C280.0653 (18)0.0394 (14)0.0460 (15)0.0297 (13)0.0285 (14)0.0127 (11)
C290.0337 (12)0.0518 (15)0.0355 (12)0.0274 (11)0.0165 (10)0.0195 (11)
C300.0369 (12)0.0299 (11)0.0367 (12)0.0187 (9)0.0196 (10)0.0115 (9)
C310.0380 (13)0.0433 (13)0.0360 (12)0.0250 (11)0.0198 (10)0.0158 (10)
C320.0363 (12)0.0330 (11)0.0352 (12)0.0205 (10)0.0196 (10)0.0129 (9)
C330.0459 (14)0.0433 (13)0.0365 (12)0.0285 (11)0.0244 (11)0.0175 (10)
C340.0456 (14)0.0494 (15)0.0524 (15)0.0315 (12)0.0315 (13)0.0210 (12)
C350.0425 (14)0.0537 (15)0.0488 (15)0.0346 (12)0.0227 (12)0.0237 (12)
C360.0375 (13)0.0403 (13)0.0374 (12)0.0223 (11)0.0188 (10)0.0154 (10)
C370.0373 (12)0.0283 (11)0.0351 (11)0.0184 (9)0.0200 (10)0.0122 (9)
C380.0335 (12)0.0358 (12)0.0386 (12)0.0200 (10)0.0184 (10)0.0139 (9)
Geometric parameters (Å, º) top
Ni1—N42.064 (2)C10—H100.9300
Ni1—O12.075 (2)C11—C121.369 (4)
Ni1—O32.078 (2)C11—H110.9300
Ni1—N22.079 (2)C12—C131.371 (4)
Ni1—N12.095 (2)C12—H120.9300
Ni1—N32.096 (2)C13—C141.378 (4)
N1—C11.341 (3)C13—H130.9300
N1—C51.352 (3)C14—C151.387 (3)
N2—C101.339 (3)C14—H140.9300
N2—C61.347 (3)C15—C161.486 (3)
N3—C111.345 (3)C16—C171.388 (3)
N3—C151.350 (3)C17—C181.379 (4)
N4—C201.346 (3)C17—H170.9300
N4—C161.350 (3)C18—C191.367 (4)
N5—C241.377 (3)C18—H180.9300
N5—C211.382 (3)C19—C201.367 (4)
N5—HN50.8598C19—H190.9300
N6—C301.376 (3)C20—H200.9300
N6—C371.377 (3)C21—C221.367 (4)
N6—HN60.8591C21—C291.485 (3)
O1—H1A0.8201C22—C231.413 (3)
O1—H1B0.8190C22—H220.9300
O2—H2A0.8192C23—C241.410 (4)
O2—H2B0.8176C23—C281.412 (4)
O3—C291.272 (3)C24—C251.396 (3)
O4—C291.253 (3)C25—C261.384 (4)
O5—C381.253 (3)C25—H250.9300
O6—C381.253 (3)C26—C271.395 (4)
O7—H7B0.8336C26—H260.9300
O7—H7A0.8125C27—C281.372 (4)
C1—C21.389 (4)C27—H270.9300
C1—H10.9300C28—H280.9300
C2—C31.374 (4)C30—C311.375 (3)
C2—H20.9300C30—C381.489 (4)
C3—C41.385 (4)C31—C321.420 (4)
C3—H30.9300C31—H310.9300
C4—C51.392 (3)C32—C331.409 (3)
C4—H40.9300C32—C371.412 (3)
C5—C61.481 (3)C33—C341.375 (4)
C6—C71.388 (4)C33—H330.9300
C7—C81.385 (4)C34—C351.395 (4)
C7—H70.9300C34—H340.9300
C8—C91.382 (4)C35—C361.381 (4)
C8—H80.9300C35—H350.9300
C9—C101.376 (4)C36—C371.398 (4)
C9—H90.9300C36—H360.9300
N4—Ni1—O192.31 (7)C14—C13—H13120.2
N4—Ni1—O393.38 (7)C13—C14—C15118.9 (3)
O1—Ni1—O390.27 (7)C13—C14—H14120.5
N4—Ni1—N2171.38 (7)C15—C14—H14120.5
O1—Ni1—N294.06 (7)N3—C15—C14121.5 (2)
O3—Ni1—N292.40 (7)N3—C15—C16115.51 (19)
N4—Ni1—N195.40 (8)C14—C15—C16123.0 (2)
O1—Ni1—N1172.15 (7)N4—C16—C17121.6 (2)
O3—Ni1—N190.72 (7)N4—C16—C15114.8 (2)
N2—Ni1—N178.12 (8)C17—C16—C15123.6 (2)
N4—Ni1—N378.62 (7)C18—C17—C16119.0 (2)
O1—Ni1—N389.26 (7)C18—C17—H17120.5
O3—Ni1—N3171.96 (7)C16—C17—H17120.5
N2—Ni1—N395.64 (8)C19—C18—C17119.4 (2)
N1—Ni1—N390.84 (7)C19—C18—H18120.3
C1—N1—C5118.6 (2)C17—C18—H18120.3
C1—N1—Ni1126.13 (17)C20—C19—C18119.1 (2)
C5—N1—Ni1115.25 (16)C20—C19—H19120.4
C10—N2—C6119.1 (2)C18—C19—H19120.4
C10—N2—Ni1124.84 (16)N4—C20—C19122.8 (2)
C6—N2—Ni1116.03 (16)N4—C20—H20118.6
C11—N3—C15118.3 (2)C19—C20—H20118.6
C11—N3—Ni1127.00 (18)C22—C21—N5108.9 (2)
C15—N3—Ni1114.71 (14)C22—C21—C29130.2 (2)
C20—N4—C16118.0 (2)N5—C21—C29120.7 (2)
C20—N4—Ni1125.64 (16)C21—C22—C23108.0 (2)
C16—N4—Ni1116.17 (15)C21—C22—H22126.0
C24—N5—C21108.7 (2)C23—C22—H22126.0
C24—N5—HN5125.7C24—C23—C28118.4 (2)
C21—N5—HN5125.6C24—C23—C22106.7 (2)
C30—N6—C37109.19 (19)C28—C23—C22134.8 (2)
C30—N6—HN6125.5N5—C24—C25129.7 (2)
C37—N6—HN6125.3N5—C24—C23107.7 (2)
Ni1—O1—H1A108.1C25—C24—C23122.5 (2)
Ni1—O1—H1B116.3C26—C25—C24117.1 (2)
H1A—O1—H1B97.8C26—C25—H25121.4
H2A—O2—H2B106.3C24—C25—H25121.4
C29—O3—Ni1128.90 (17)C25—C26—C27121.5 (2)
H7B—O7—H7A118.6C25—C26—H26119.3
N1—C1—C2122.9 (3)C27—C26—H26119.3
N1—C1—H1118.5C28—C27—C26121.4 (2)
C2—C1—H1118.5C28—C27—H27119.3
C3—C2—C1118.1 (3)C26—C27—H27119.3
C3—C2—H2121.0C27—C28—C23119.0 (3)
C1—C2—H2121.0C27—C28—H28120.5
C2—C3—C4120.2 (2)C23—C28—H28120.5
C2—C3—H3119.9O4—C29—O3126.4 (2)
C4—C3—H3119.9O4—C29—C21118.1 (2)
C3—C4—C5118.6 (3)O3—C29—C21115.5 (2)
C3—C4—H4120.7C31—C30—N6108.7 (2)
C5—C4—H4120.7C31—C30—C38129.2 (2)
N1—C5—C4121.7 (2)N6—C30—C38121.8 (2)
N1—C5—C6115.3 (2)C30—C31—C32107.8 (2)
C4—C5—C6123.1 (2)C30—C31—H31126.1
N2—C6—C7121.1 (2)C32—C31—H31126.1
N2—C6—C5115.1 (2)C33—C32—C37118.5 (2)
C7—C6—C5123.8 (2)C33—C32—C31134.9 (2)
C8—C7—C6119.4 (2)C37—C32—C31106.6 (2)
C8—C7—H7120.3C34—C33—C32119.0 (2)
C6—C7—H7120.3C34—C33—H33120.5
C9—C8—C7119.1 (3)C32—C33—H33120.5
C9—C8—H8120.5C33—C34—C35121.3 (2)
C7—C8—H8120.5C33—C34—H34119.3
C10—C9—C8118.6 (3)C35—C34—H34119.3
C10—C9—H9120.7C36—C35—C34121.6 (2)
C8—C9—H9120.7C36—C35—H35119.2
N2—C10—C9122.7 (2)C34—C35—H35119.2
N2—C10—H10118.6C35—C36—C37117.1 (2)
C9—C10—H10118.6C35—C36—H36121.4
N3—C11—C12122.8 (3)C37—C36—H36121.4
N3—C11—H11118.6N6—C37—C36129.9 (2)
C12—C11—H11118.6N6—C37—C32107.7 (2)
C11—C12—C13118.8 (3)C36—C37—C32122.4 (2)
C11—C12—H12120.6O6—C38—O5124.6 (2)
C13—C12—H12120.6O6—C38—C30118.0 (2)
C12—C13—C14119.6 (2)O5—C38—C30117.4 (2)
C12—C13—H13120.2
N4—Ni1—N1—C16.3 (2)N3—C11—C12—C130.4 (4)
O1—Ni1—N1—C1175.6 (4)C11—C12—C13—C140.0 (4)
O3—Ni1—N1—C187.2 (2)C12—C13—C14—C151.5 (4)
N2—Ni1—N1—C1179.5 (2)C11—N3—C15—C142.5 (3)
N3—Ni1—N1—C184.9 (2)Ni1—N3—C15—C14176.99 (17)
N4—Ni1—N1—C5171.13 (16)C11—N3—C15—C16177.54 (19)
O1—Ni1—N1—C51.8 (5)Ni1—N3—C15—C163.0 (2)
O3—Ni1—N1—C595.41 (16)C13—C14—C15—N32.8 (3)
N2—Ni1—N1—C53.11 (15)C13—C14—C15—C16177.2 (2)
N3—Ni1—N1—C592.48 (16)C20—N4—C16—C172.4 (3)
N4—Ni1—N2—C10139.6 (4)Ni1—N4—C16—C17173.42 (16)
O1—Ni1—N2—C102.1 (2)C20—N4—C16—C15179.22 (19)
O3—Ni1—N2—C1088.3 (2)Ni1—N4—C16—C155.0 (2)
N1—Ni1—N2—C10178.5 (2)N3—C15—C16—N45.3 (3)
N3—Ni1—N2—C1091.8 (2)C14—C15—C16—N4174.7 (2)
N4—Ni1—N2—C637.9 (5)N3—C15—C16—C17173.1 (2)
O1—Ni1—N2—C6175.46 (16)C14—C15—C16—C176.9 (3)
O3—Ni1—N2—C694.10 (17)N4—C16—C17—C182.3 (3)
N1—Ni1—N2—C63.88 (16)C15—C16—C17—C18179.4 (2)
N3—Ni1—N2—C685.80 (17)C16—C17—C18—C190.2 (4)
N4—Ni1—N3—C11179.7 (2)C17—C18—C19—C201.8 (4)
O1—Ni1—N3—C1187.7 (2)C16—N4—C20—C190.3 (3)
O3—Ni1—N3—C11174.4 (4)Ni1—N4—C20—C19175.07 (18)
N2—Ni1—N3—C116.3 (2)C18—C19—C20—N41.8 (4)
N1—Ni1—N3—C1184.4 (2)C24—N5—C21—C220.6 (3)
N4—Ni1—N3—C150.30 (14)C24—N5—C21—C29175.2 (2)
O1—Ni1—N3—C1592.81 (15)N5—C21—C22—C230.9 (3)
O3—Ni1—N3—C156.1 (6)C29—C21—C22—C23174.3 (2)
N2—Ni1—N3—C15173.19 (15)C21—C22—C23—C240.9 (3)
N1—Ni1—N3—C1595.04 (16)C21—C22—C23—C28176.7 (3)
O1—Ni1—N4—C2089.34 (19)C21—N5—C24—C25179.7 (3)
O3—Ni1—N4—C201.07 (19)C21—N5—C24—C230.0 (3)
N2—Ni1—N4—C20133.1 (4)C28—C23—C24—N5177.5 (2)
N1—Ni1—N4—C2092.11 (19)C22—C23—C24—N50.6 (3)
N3—Ni1—N4—C20178.1 (2)C28—C23—C24—C252.1 (4)
O1—Ni1—N4—C1686.09 (15)C22—C23—C24—C25179.7 (2)
O3—Ni1—N4—C16176.50 (15)N5—C24—C25—C26179.0 (3)
N2—Ni1—N4—C1651.5 (5)C23—C24—C25—C260.6 (4)
N1—Ni1—N4—C1692.46 (15)C24—C25—C26—C270.8 (4)
N3—Ni1—N4—C162.69 (14)C25—C26—C27—C280.7 (4)
N4—Ni1—O3—C29109.4 (2)C26—C27—C28—C230.9 (4)
O1—Ni1—O3—C2917.0 (2)C24—C23—C28—C272.2 (4)
N2—Ni1—O3—C2977.1 (2)C22—C23—C28—C27179.7 (3)
N1—Ni1—O3—C29155.2 (2)Ni1—O3—C29—O40.3 (4)
N3—Ni1—O3—C29103.6 (5)Ni1—O3—C29—C21179.74 (15)
C5—N1—C1—C21.3 (4)C22—C21—C29—O4169.1 (3)
Ni1—N1—C1—C2178.66 (19)N5—C21—C29—O45.6 (4)
N1—C1—C2—C30.5 (4)C22—C21—C29—O310.9 (4)
C1—C2—C3—C40.3 (4)N5—C21—C29—O3174.3 (2)
C2—C3—C4—C50.2 (4)C37—N6—C30—C310.1 (3)
C1—N1—C5—C41.4 (3)C37—N6—C30—C38175.52 (19)
Ni1—N1—C5—C4179.07 (18)N6—C30—C31—C320.5 (3)
C1—N1—C5—C6179.6 (2)C38—C30—C31—C32174.5 (2)
Ni1—N1—C5—C62.0 (2)C30—C31—C32—C33179.7 (3)
C3—C4—C5—N10.7 (4)C30—C31—C32—C370.8 (3)
C3—C4—C5—C6179.6 (2)C37—C32—C33—C342.7 (3)
C10—N2—C6—C71.4 (3)C31—C32—C33—C34176.8 (3)
Ni1—N2—C6—C7176.33 (18)C32—C33—C34—C352.1 (4)
C10—N2—C6—C5178.3 (2)C33—C34—C35—C360.7 (4)
Ni1—N2—C6—C54.0 (2)C34—C35—C36—C370.0 (4)
N1—C5—C6—N21.3 (3)C30—N6—C37—C36177.7 (2)
C4—C5—C6—N2177.6 (2)C30—N6—C37—C320.6 (2)
N1—C5—C6—C7179.0 (2)C35—C36—C37—N6178.7 (2)
C4—C5—C6—C72.0 (4)C35—C36—C37—C320.7 (3)
N2—C6—C7—C81.8 (4)C33—C32—C37—N6179.6 (2)
C5—C6—C7—C8177.9 (2)C31—C32—C37—N60.9 (2)
C6—C7—C8—C90.8 (4)C33—C32—C37—C362.0 (3)
C7—C8—C9—C100.4 (4)C31—C32—C37—C36177.6 (2)
C6—N2—C10—C90.1 (4)C31—C30—C38—O6162.5 (2)
Ni1—N2—C10—C9177.42 (19)N6—C30—C38—O611.8 (3)
C8—C9—C10—N20.8 (4)C31—C30—C38—O516.1 (4)
C15—N3—C11—C120.9 (4)N6—C30—C38—O5169.5 (2)
Ni1—N3—C11—C12178.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.821.892.647 (3)154.0
O2—H2A···O50.821.912.732 (4)178.3
O2—H2B···O40.822.102.885 (4)161.7
O7—H7A···O50.812.422.994 (4)129.0
N6—HN6···O6i0.861.992.814 (3)159.0
O1—H1B···O6ii0.821.932.750 (3)174.2
O1—H1B···O5ii0.822.603.166 (3)127.6
C4—H4···O2iii0.932.543.400 (5)155
C14—H14···O7iv0.932.413.320 (4)167
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C9H6NO2)(C10H8N2)2(H2O)](C9H6NO2)·2H2O
Mr745.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.499 (8), 13.128 (9), 13.477 (9)
α, β, γ (°)95.389 (9), 114.166 (9), 117.804 (8)
V3)1669.7 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.40 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.848, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
9411, 6750, 5675
Rint0.026
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.07
No. of reflections6750
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.88

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.821.892.647 (3)154.0
O2—H2A···O50.821.912.732 (4)178.3
O2—H2B···O40.822.102.885 (4)161.7
O7—H7A···O50.812.422.994 (4)129.0
N6—HN6···O6i0.861.992.814 (3)159.0
O1—H1B···O6ii0.821.932.750 (3)174.2
O1—H1B···O5ii0.822.603.166 (3)127.6
C4—H4···O2iii0.932.543.400 (5)154.5
C14—H14···O7iv0.932.413.320 (4)167.4
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLou, Q.-Z. & Zhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 199–201.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 483–484.  CAS Google Scholar
First citationZhang, B.-S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 73–74.  CAS Google Scholar
First citationZhang, B.-S. (2006a). Acta Cryst. E62, m2645–m2647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-S. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 191–194.  CAS Google Scholar
First citationZhang, B. S. (2006c). Z. Kristallogr. New Cryst. Struct. 221, 355–356.  CAS Google Scholar
First citationZhang, B.-S. & Ying, T.-K. (2005). Chin. J. Inorg. Chem. 21, 515–518.  CAS Google Scholar
First citationZhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. & Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 211–212.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m48-m49
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds