metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(imino­di­acetato-κ3O,N,O′)(1,10-phenanthroline-κ2N,N′)cobalt(II) monohydrate

aFaculty of Engineering & Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53100 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 December 2008; accepted 6 December 2008; online 10 December 2008)

The imino­diacetate dianion in the title compound, [Co(C4H5NO4)(C12H8N2)(H2O)]·H2O, chelates to the cobalt(II) atom, its N and two O atoms occupying the fac sites of the distorted octa­hedron around the metal atom. The metal atom is also chelated by the N-heterocycle. The dianion, and coordinated and uncoordinated water mol­ecules inter­act through hydrogen bonds, generating a layer motif. The crystal studied was a racemic twin with a 0.62 (2):0.38 (2) domain ratio.

Related literature

For structural examples of the N-heterocycle adducts of cobalt imino­diacetate, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (1989[Xu, D.-J., Cheng, C. R., Xu, Y.-Z. & Hu, S.-Z. (1989). Jiegou Huaxue, 8, 81-85.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H5NO4)(C12H8N2)(H2O)]·H2O

  • Mr = 406.26

  • Monoclinic, P n

  • a = 6.7884 (3) Å

  • b = 12.0903 (5) Å

  • c = 10.4945 (4) Å

  • β = 108.357 (3)°

  • V = 817.49 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 100 (2) K

  • 0.35 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.979

  • 6417 measured reflections

  • 3639 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.00

  • 3639 reflections

  • 248 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1746 Friedel pairs

  • Flack parameter: 0.38 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.84 (5) 1.82 (4) 2.656 (5) 174 (6)
O1w—H12⋯O4ii 0.84 (6) 1.87 (4) 2.682 (5) 162 (6)
O2w—H21⋯O1i 0.84 (5) 1.98 (4) 2.815 (5) 174 (7)
O2w—H22⋯O4 0.84 (6) 2.05 (5) 2.871 (5) 165 (6)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For structural examples of the N-heterocycle adducts of cobalt iminodiacetate, see: Su & Xu (2004); Xu et al. (1989).

Experimental top

An aqueous solution of cobalt(II) chloride (0.24 g, 1 mmol) was mixed with an aqueous solutin of disodium iminodiacetate monohydrate (0.20 g, 1 mmol); this was added to a water-methanol solution of 1,10-phenanthroline (0.20 g, 1 mmol). The solution was set aside for the growth of orange crystals.

Refinement top

Carbon-bound hydrogen atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2 times Ueq(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were freely refined. The amino H-atom could not be located, and was treated as riding.

The structure is a racemic twin. The explicit refinement of the Flack parameter gave the twin component as 0.38 (2).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Co(C12H8N2)(C4H5NO4)(H2O).H2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Aqua(iminodiacetato-κ3O,N,O')(1,10- phenanthroline-κ2N,N')cobalt(II) monohydrate top
Crystal data top
[Co(C4H5NO4)(C12H8N2)(H2O)]·H2OF(000) = 418
Mr = 406.26Dx = 1.650 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yacCell parameters from 1265 reflections
a = 6.7884 (3) Åθ = 2.6–24.5°
b = 12.0903 (5) ŵ = 1.09 mm1
c = 10.4945 (4) ÅT = 100 K
β = 108.357 (3)°Prism, orange
V = 817.49 (6) Å30.35 × 0.02 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.701, Tmax = 0.979k = 1515
6417 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0697P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3639 reflectionsΔρmax = 0.86 e Å3
248 parametersΔρmin = 0.49 e Å3
8 restraintsAbsolute structure: Flack (1983), 1746 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.38 (2)
Crystal data top
[Co(C4H5NO4)(C12H8N2)(H2O)]·H2OV = 817.49 (6) Å3
Mr = 406.26Z = 2
Monoclinic, PnMo Kα radiation
a = 6.7884 (3) ŵ = 1.09 mm1
b = 12.0903 (5) ÅT = 100 K
c = 10.4945 (4) Å0.35 × 0.02 × 0.02 mm
β = 108.357 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2997 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.979Rint = 0.048
6417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126Δρmax = 0.86 e Å3
S = 1.00Δρmin = 0.49 e Å3
3639 reflectionsAbsolute structure: Flack (1983), 1746 Friedel pairs
248 parametersAbsolute structure parameter: 0.38 (2)
8 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.49999 (10)0.85733 (5)0.50000 (8)0.01527 (16)
O10.4183 (7)0.8730 (3)0.6730 (4)0.0222 (9)
O20.3360 (6)1.0019 (3)0.7965 (4)0.0254 (8)
O30.7258 (6)0.9787 (3)0.5790 (3)0.0196 (9)
O40.7806 (5)1.1607 (3)0.5786 (3)0.0190 (7)
O1W0.5702 (6)0.8446 (3)0.3211 (4)0.0194 (9)
H110.652 (7)0.896 (3)0.317 (5)0.029*
H120.493 (7)0.830 (4)0.243 (2)0.029*
O2W0.9365 (7)1.2706 (3)0.3875 (4)0.0307 (9)
H210.939 (10)1.225 (4)0.327 (4)0.046*
H220.870 (9)1.243 (4)0.435 (5)0.046*
N10.3129 (7)1.0058 (4)0.4480 (4)0.0162 (10)
H10.21040.99680.37270.019*
N20.6902 (8)0.7165 (4)0.5733 (5)0.0171 (10)
N30.2824 (7)0.7278 (4)0.4343 (4)0.0168 (11)
C10.3389 (7)0.9654 (4)0.6867 (5)0.0193 (10)
C20.2335 (7)1.0313 (4)0.5604 (5)0.0202 (10)
H2A0.08261.01600.53200.024*
H2B0.25331.11120.58140.024*
C30.4607 (8)1.0907 (4)0.4324 (5)0.0183 (10)
H3A0.40621.16530.44140.022*
H3B0.47601.08490.34190.022*
C40.6704 (8)1.0754 (4)0.5382 (5)0.0177 (10)
C50.8890 (9)0.7128 (5)0.6410 (5)0.0217 (13)
H50.96250.78060.66380.026*
C60.9974 (10)0.6143 (5)0.6811 (6)0.0256 (13)
H61.14100.61540.73100.031*
C70.8948 (9)0.5164 (5)0.6478 (5)0.0246 (13)
H70.96660.44850.67360.030*
C80.6812 (10)0.5167 (5)0.5748 (5)0.0221 (13)
C90.5835 (10)0.6199 (5)0.5401 (7)0.0210 (14)
C100.5597 (10)0.4182 (5)0.5380 (6)0.0269 (14)
H100.62470.34810.56010.032*
C110.3534 (10)0.4234 (4)0.4720 (6)0.0230 (12)
H11A0.27540.35700.45000.028*
C120.2518 (10)0.5267 (5)0.4351 (5)0.0205 (13)
C130.3668 (10)0.6250 (4)0.4676 (6)0.0128 (12)
C140.0390 (9)0.5374 (4)0.3682 (5)0.0220 (12)
H140.04620.47340.34590.026*
C150.0462 (10)0.6399 (4)0.3350 (6)0.0238 (14)
H150.19020.64750.28840.029*
C160.0795 (8)0.7328 (5)0.3699 (6)0.0182 (11)
H160.01750.80350.34670.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0158 (3)0.0120 (3)0.0173 (3)0.0003 (3)0.0041 (2)0.0001 (3)
O10.033 (3)0.0132 (18)0.024 (2)0.0052 (16)0.0135 (19)0.0029 (14)
O20.0220 (19)0.032 (2)0.0207 (17)0.0070 (16)0.0052 (14)0.0024 (16)
O30.017 (2)0.0178 (19)0.021 (2)0.0012 (15)0.0013 (16)0.0033 (15)
O40.0219 (18)0.0127 (17)0.0210 (17)0.0021 (14)0.0048 (14)0.0012 (13)
O1W0.014 (2)0.023 (2)0.0183 (19)0.0049 (15)0.0022 (16)0.0039 (15)
O2W0.049 (3)0.0175 (19)0.029 (2)0.0081 (18)0.0165 (19)0.0030 (15)
N10.010 (2)0.022 (3)0.012 (2)0.0009 (18)0.0025 (17)0.0020 (19)
N20.019 (2)0.011 (2)0.022 (2)0.0010 (19)0.0077 (19)0.0011 (19)
N30.021 (2)0.015 (2)0.014 (2)0.0008 (19)0.0053 (19)0.0012 (18)
C10.012 (2)0.027 (3)0.017 (2)0.001 (2)0.0017 (19)0.001 (2)
C20.015 (2)0.021 (2)0.025 (3)0.0072 (19)0.008 (2)0.003 (2)
C30.017 (3)0.013 (2)0.022 (2)0.002 (2)0.002 (2)0.0032 (19)
C40.020 (3)0.016 (3)0.017 (2)0.001 (2)0.007 (2)0.001 (2)
C50.019 (3)0.026 (3)0.018 (3)0.002 (2)0.003 (2)0.004 (2)
C60.017 (3)0.034 (3)0.022 (3)0.008 (3)0.002 (2)0.004 (2)
C70.027 (3)0.021 (3)0.026 (3)0.012 (2)0.008 (2)0.008 (2)
C80.027 (3)0.020 (3)0.023 (3)0.004 (2)0.013 (2)0.007 (2)
C90.023 (3)0.018 (3)0.024 (3)0.001 (2)0.009 (2)0.000 (2)
C100.041 (4)0.011 (2)0.033 (3)0.004 (2)0.017 (3)0.002 (2)
C110.029 (3)0.013 (2)0.030 (3)0.001 (2)0.014 (2)0.001 (2)
C120.029 (3)0.015 (3)0.022 (3)0.004 (2)0.013 (3)0.000 (2)
C130.016 (3)0.010 (3)0.013 (2)0.003 (2)0.006 (2)0.0001 (19)
C140.019 (3)0.019 (3)0.027 (3)0.007 (2)0.006 (2)0.002 (2)
C150.019 (3)0.025 (3)0.027 (3)0.005 (2)0.006 (2)0.003 (2)
C160.012 (2)0.016 (3)0.023 (3)0.003 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—O12.067 (4)C3—C41.516 (7)
Co1—O1W2.083 (4)C3—H3A0.9900
Co1—O32.095 (4)C3—H3B0.9900
Co1—N32.113 (5)C5—C61.394 (8)
Co1—N22.129 (5)C5—H50.9500
Co1—N12.167 (5)C6—C71.362 (8)
O1—C11.269 (6)C6—H60.9500
O2—C11.240 (6)C7—C81.411 (8)
O3—C41.260 (6)C7—H70.9500
O4—C41.267 (6)C8—C91.406 (9)
O1W—H110.84 (5)C8—C101.430 (8)
O1W—H120.84 (6)C9—C131.429 (8)
O2W—H210.84 (5)C10—C111.355 (9)
O2W—H220.84 (6)C10—H100.9500
N1—C21.476 (6)C11—C121.420 (8)
N1—C31.480 (6)C11—H11A0.9500
N1—H10.8800C12—C141.399 (9)
N2—C51.313 (8)C12—C131.403 (8)
N2—C91.360 (8)C14—C151.365 (8)
N3—C161.331 (7)C14—H140.9500
N3—C131.368 (7)C15—C161.389 (8)
C1—C21.518 (6)C15—H150.9500
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900
O1—Co1—O1W177.6 (2)C4—C3—H3A109.6
O1—Co1—O387.34 (16)N1—C3—H3B109.6
O1W—Co1—O393.54 (15)C4—C3—H3B109.6
O1—Co1—N390.07 (17)H3A—C3—H3B108.1
O1W—Co1—N389.20 (16)O3—C4—O4124.0 (5)
O3—Co1—N3175.53 (17)O3—C4—C3118.3 (5)
O1—Co1—N293.20 (16)O4—C4—C3117.7 (4)
O1W—Co1—N288.95 (17)N2—C5—C6123.2 (6)
O3—Co1—N297.62 (17)N2—C5—H5118.4
N3—Co1—N278.88 (15)C6—C5—H5118.4
O1—Co1—N181.23 (15)C7—C6—C5119.1 (6)
O1W—Co1—N196.68 (15)C7—C6—H6120.4
O3—Co1—N179.47 (17)C5—C6—H6120.4
N3—Co1—N1103.74 (19)C6—C7—C8119.5 (5)
N2—Co1—N1173.79 (18)C6—C7—H7120.2
C1—O1—Co1114.9 (3)C8—C7—H7120.2
C4—O3—Co1114.3 (3)C9—C8—C7117.5 (5)
Co1—O1W—H11109 (3)C9—C8—C10119.0 (5)
Co1—O1W—H12130 (3)C7—C8—C10123.5 (5)
H11—O1W—H12109 (5)N2—C9—C8121.7 (6)
H21—O2W—H22109 (5)N2—C9—C13118.4 (6)
C2—N1—C3111.9 (4)C8—C9—C13119.9 (6)
C2—N1—Co1107.7 (3)C11—C10—C8121.0 (5)
C3—N1—Co1103.8 (3)C11—C10—H10119.5
C2—N1—H1111.0C8—C10—H10119.5
C3—N1—H1111.0C10—C11—C12121.0 (6)
Co1—N1—H1111.0C10—C11—H11A119.5
C5—N2—C9118.9 (5)C12—C11—H11A119.5
C5—N2—Co1128.7 (4)C14—C12—C13116.9 (5)
C9—N2—Co1112.4 (4)C14—C12—C11123.6 (5)
C16—N3—C13117.0 (5)C13—C12—C11119.5 (6)
C16—N3—Co1129.6 (4)N3—C13—C12123.5 (6)
C13—N3—Co1113.4 (4)N3—C13—C9116.9 (6)
O2—C1—O1123.4 (5)C12—C13—C9119.6 (6)
O2—C1—C2118.9 (4)C15—C14—C12119.9 (5)
O1—C1—C2117.6 (4)C15—C14—H14120.0
N1—C2—C1113.4 (4)C12—C14—H14120.0
N1—C2—H2A108.9C14—C15—C16119.5 (6)
C1—C2—H2A108.9C14—C15—H15120.3
N1—C2—H2B108.9C16—C15—H15120.3
C1—C2—H2B108.9N3—C16—C15123.3 (5)
H2A—C2—H2B107.7N3—C16—H16118.4
N1—C3—C4110.3 (4)C15—C16—H16118.4
N1—C3—H3A109.6
O3—Co1—O1—C166.7 (4)Co1—O3—C4—C34.4 (6)
N3—Co1—O1—C1116.9 (4)N1—C3—C4—O331.4 (6)
N2—Co1—O1—C1164.2 (4)N1—C3—C4—O4149.6 (4)
N1—Co1—O1—C113.1 (4)C9—N2—C5—C60.1 (8)
O1—Co1—O3—C496.3 (4)Co1—N2—C5—C6178.6 (4)
O1W—Co1—O3—C481.5 (4)N2—C5—C6—C70.8 (9)
N2—Co1—O3—C4170.9 (3)C5—C6—C7—C80.6 (8)
N1—Co1—O3—C414.7 (4)C6—C7—C8—C90.3 (8)
O1—Co1—N1—C21.0 (3)C6—C7—C8—C10178.6 (5)
O1W—Co1—N1—C2177.7 (3)C5—N2—C9—C80.9 (8)
O3—Co1—N1—C289.9 (3)Co1—N2—C9—C8177.9 (4)
N3—Co1—N1—C286.9 (3)C5—N2—C9—C13179.4 (5)
O1—Co1—N1—C3117.8 (3)Co1—N2—C9—C131.9 (6)
O1W—Co1—N1—C363.4 (3)C7—C8—C9—N21.0 (8)
O3—Co1—N1—C328.9 (3)C10—C8—C9—N2179.4 (5)
N3—Co1—N1—C3154.3 (3)C7—C8—C9—C13179.2 (5)
O1—Co1—N2—C590.5 (5)C10—C8—C9—C130.8 (7)
O1W—Co1—N2—C590.7 (5)C9—C8—C10—C110.7 (8)
O3—Co1—N2—C52.8 (5)C7—C8—C10—C11177.6 (5)
N3—Co1—N2—C5180.0 (5)C8—C10—C11—C121.1 (8)
O1—Co1—N2—C990.9 (4)C10—C11—C12—C14179.3 (5)
O1W—Co1—N2—C988.0 (4)C10—C11—C12—C130.0 (8)
O3—Co1—N2—C9178.6 (4)C16—N3—C13—C121.3 (8)
N3—Co1—N2—C91.4 (4)Co1—N3—C13—C12179.6 (4)
O1—Co1—N3—C1684.0 (5)C16—N3—C13—C9178.2 (5)
O1W—Co1—N3—C1693.7 (5)Co1—N3—C13—C90.1 (6)
N2—Co1—N3—C16177.2 (5)C14—C12—C13—N31.7 (8)
N1—Co1—N3—C163.0 (5)C11—C12—C13—N3179.0 (5)
O1—Co1—N3—C1394.1 (4)C14—C12—C13—C9177.8 (5)
O1W—Co1—N3—C1388.3 (4)C11—C12—C13—C91.5 (7)
N2—Co1—N3—C130.8 (4)N2—C9—C13—N31.2 (7)
N1—Co1—N3—C13175.0 (3)C8—C9—C13—N3178.5 (5)
Co1—O1—C1—O2158.4 (4)N2—C9—C13—C12178.3 (5)
Co1—O1—C1—C224.6 (6)C8—C9—C13—C121.9 (7)
C3—N1—C2—C1101.0 (5)C13—C12—C14—C151.4 (8)
Co1—N1—C2—C112.5 (5)C11—C12—C14—C15179.2 (5)
O2—C1—C2—N1157.4 (4)C12—C14—C15—C160.9 (9)
O1—C1—C2—N125.4 (6)C13—N3—C16—C150.7 (8)
C2—N1—C3—C477.1 (5)Co1—N3—C16—C15178.7 (4)
Co1—N1—C3—C438.8 (4)C14—C15—C16—N30.5 (9)
Co1—O3—C4—O4176.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.84 (5)1.82 (4)2.656 (5)174 (6)
O1w—H12···O4ii0.84 (6)1.87 (4)2.682 (5)162 (6)
O2w—H21···O1i0.84 (5)1.98 (4)2.815 (5)174 (7)
O2w—H22···O40.84 (6)2.05 (5)2.871 (5)165 (6)
N1—H1···O2ii0.882.413.126 (6)139
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C4H5NO4)(C12H8N2)(H2O)]·H2O
Mr406.26
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)6.7884 (3), 12.0903 (5), 10.4945 (4)
β (°) 108.357 (3)
V3)817.49 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.35 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6417, 3639, 2997
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.00
No. of reflections3639
No. of parameters248
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.49
Absolute structureFlack (1983), 1746 Friedel pairs
Absolute structure parameter0.38 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.84 (5)1.82 (4)2.656 (5)174 (6)
O1w—H12···O4ii0.84 (6)1.87 (4)2.682 (5)162 (6)
O2w—H21···O1i0.84 (5)1.98 (4)2.815 (5)174 (7)
O2w—H22···O40.84 (6)2.05 (5)2.871 (5)165 (6)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x1/2, y+2, z1/2.
 

Acknowledgements

We thank Universiti Tunku Abdul Rahman and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXu, D.-J., Cheng, C. R., Xu, Y.-Z. & Hu, S.-Z. (1989). Jiegou Huaxue, 8, 81–85.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds