metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(3-Meth­­oxy-2-oxido­benzyl­­idene-κO2)alaninato-κ2N,O]di­phenyl­tin(IV)

aResearch Center for Eco-Environmental Sciences of the Yellow River Delta, Binzhou University, Binzhou 256600, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256600, People's Republic of China
*Correspondence e-mail: yanqiudang@163.com

(Received 19 January 2009; accepted 20 January 2009; online 28 January 2009)

The Sn atom of the title compound, [Sn(C6H5)2(C11H11NO4)], adopts a distorted SnNC2O2 trigonal–bipyramidal geometry with the O atoms in the axial positions. The metal atom forms five- and six-membered chelate rings with the O,N,O′-tridentate ligand.

Related literature

For background, see: Rivera et al. (2006[Rivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater. 18, 1174-1183.]). For related structures, see: Beltran et al. (2003[Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.]); Tian et al. (2007[Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C11H11NO4)]

  • Mr = 494.10

  • Monoclinic, P 21 /c

  • a = 13.3881 (10) Å

  • b = 9.0304 (6) Å

  • c = 17.3398 (12) Å

  • β = 95.077 (1)°

  • V = 2088.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 295 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.885

  • 16481 measured reflections

  • 4326 independent reflections

  • 3475 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.04

  • 4326 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.109 (2)
Sn1—C7 2.113 (2)
Sn1—O1 2.1360 (16)
Sn1—O3 2.0752 (14)
Sn1—N1 2.1493 (17)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The diorganotin complexes with Schiff bases derived from α-amino acids continue to receive attention because of their biological activities and their quadratic nonlinear optical properties (e.g. Rivera et al., 2006). The structures of two diorganotin complexes based on the Schiff base ligand [N-(2-hydroxyphenylmethylene)alanine, [N-(2-oxidophenylmethylene)alaninato]diphenyltin(IV) (Beltran et al., 2003) and dicyclohexyl[N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]tin(IV) (Tian et al., 2007) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry of the Sn atom in (I) is that of a distorted trigonal bipyramid with two phenyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O3 atom (Fig. 1). The Sn atom is 0.061 (3) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length of Sn1—O1 [2.1360 (16) Å] is longer than that of Sn1—O3 [2.0752 (14) Å]. The bond angle O1—Sn1—O3 is 158.35 (6)°, which is slightly larger than that observed in [N-(2-oxidophenylmethylene)alaninato]diphenyltin(IV) [156.90 (9)°] (Beltran et al., 2003) and dicyclohexyl[N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]tin(IV) [154.9 (1)°] (Tian et al., 2007). The monodentate mode of coordination of carboxylate is reflected in the disparate C23—O1 and C23—O2 bond lengths of 1.290 (3) and 1.213 (3) Å, respectively.

Related literature top

For background, see: Rivera et al. (2006). For related structures, see: Beltran et al. (2003); Tian et al. (2007).

Experimental top

The title compound was prepared by the reaction of diphenyltin dichloride (0.69 g, 2 mmol) with potassium N-(3-methoxy-2-hydroxyphenylmethylene)alaninate (0.29 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (30 ml). The reaction mixture was refluxed for 2 h and filtered. The yellow solid obtained by removal of solvent under reduced pressure was recrystallized from methanol and yellow blocks of (I) were obtained from dichloromethane–hexane (1:1 v/v) by slow evaporation at room temperature (yield 76%, m.p. 535–536 K).

Refinement top

The H atoms were placed at calculated positions (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 30% probability level. The H atoms have been omitted for clarity.
[N-(3-Methoxy-2-oxidobenzylidene-κO2)alaninato- κ2N,O]diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C11H11NO4)]F(000) = 992
Mr = 494.10Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6772 reflections
a = 13.3881 (10) Åθ = 2.4–27.7°
b = 9.0304 (6) ŵ = 1.25 mm1
c = 17.3398 (12) ÅT = 295 K
β = 95.077 (1)°Block, yellow
V = 2088.2 (3) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
4326 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1616
Tmin = 0.825, Tmax = 0.885k = 1111
16481 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.029P)2 + 0.7005P]
where P = (Fo2 + 2Fc2)/3
4326 reflections(Δ/σ)max = 0.002
262 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Sn(C6H5)2(C11H11NO4)]V = 2088.2 (3) Å3
Mr = 494.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3881 (10) ŵ = 1.25 mm1
b = 9.0304 (6) ÅT = 295 K
c = 17.3398 (12) Å0.16 × 0.12 × 0.10 mm
β = 95.077 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3475 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.885Rint = 0.022
16481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
4326 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.292357 (11)0.503657 (15)0.348838 (8)0.03542 (6)
N10.32598 (13)0.28485 (19)0.30979 (10)0.0385 (4)
O10.41792 (13)0.53434 (17)0.28262 (10)0.0467 (4)
O20.52345 (14)0.4293 (2)0.20800 (11)0.0638 (5)
O30.18288 (11)0.39202 (16)0.40344 (9)0.0450 (4)
O40.07445 (14)0.3448 (2)0.51854 (10)0.0609 (5)
C10.36449 (17)0.6022 (2)0.44906 (13)0.0415 (5)
C20.4416 (2)0.7013 (3)0.44224 (16)0.0575 (7)
H20.46640.71510.39430.069*
C30.4825 (2)0.7803 (4)0.50548 (18)0.0727 (9)
H30.53400.84760.50010.087*
C40.4471 (2)0.7590 (4)0.57586 (18)0.0782 (10)
H40.47360.81310.61850.094*
C50.3736 (3)0.6596 (5)0.58371 (17)0.0905 (11)
H50.35150.64320.63230.109*
C60.3305 (2)0.5816 (4)0.52079 (15)0.0706 (8)
H60.27870.51540.52690.085*
C70.18958 (16)0.6179 (2)0.27068 (12)0.0403 (5)
C80.2149 (2)0.7542 (3)0.24244 (18)0.0664 (8)
H80.27650.79650.25880.080*
C90.1487 (3)0.8287 (4)0.1896 (2)0.0847 (10)
H90.16640.92060.17080.102*
C100.0582 (2)0.7683 (4)0.16505 (18)0.0717 (9)
H100.01440.81840.12950.086*
C110.0321 (2)0.6336 (4)0.19299 (16)0.0660 (8)
H110.02970.59200.17660.079*
C120.0976 (2)0.5588 (3)0.24582 (16)0.0554 (6)
H120.07910.46740.26470.066*
C130.18852 (16)0.2585 (2)0.43474 (13)0.0383 (5)
C140.24719 (17)0.1438 (3)0.40775 (13)0.0426 (5)
C150.2462 (2)0.0026 (3)0.44269 (19)0.0591 (7)
H150.28480.07350.42470.071*
C160.1894 (2)0.0228 (3)0.50210 (19)0.0670 (8)
H160.19000.11590.52510.080*
C170.1301 (2)0.0894 (3)0.52905 (15)0.0575 (7)
H170.09060.07020.56940.069*
C180.12930 (18)0.2276 (3)0.49671 (13)0.0461 (5)
C190.0072 (2)0.3215 (4)0.57615 (18)0.0810 (10)
H19A0.02590.41290.58620.121*
H19B0.04380.28720.62280.121*
H19C0.04170.24870.55840.121*
C200.30727 (16)0.1628 (2)0.34391 (13)0.0434 (5)
H200.33580.07760.32520.052*
C210.38800 (17)0.2828 (3)0.24357 (13)0.0441 (5)
H210.43260.19670.24760.053*
C220.3194 (2)0.2741 (4)0.16856 (15)0.0698 (8)
H22A0.28070.18460.16810.105*
H22B0.35920.27450.12520.105*
H22C0.27510.35790.16520.105*
C230.45012 (17)0.4244 (3)0.24431 (13)0.0422 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03617 (10)0.03374 (10)0.03691 (10)0.00146 (6)0.00633 (6)0.00038 (6)
N10.0354 (10)0.0370 (10)0.0442 (10)0.0001 (8)0.0092 (8)0.0041 (8)
O10.0492 (10)0.0413 (9)0.0520 (10)0.0067 (7)0.0170 (8)0.0066 (7)
O20.0622 (12)0.0598 (11)0.0751 (13)0.0118 (10)0.0371 (10)0.0114 (10)
O30.0425 (9)0.0395 (9)0.0553 (10)0.0031 (7)0.0178 (7)0.0053 (7)
O40.0676 (12)0.0582 (11)0.0616 (11)0.0035 (9)0.0319 (9)0.0034 (9)
C10.0420 (12)0.0427 (12)0.0393 (12)0.0061 (10)0.0013 (10)0.0014 (10)
C20.0552 (16)0.0639 (17)0.0529 (15)0.0079 (13)0.0025 (12)0.0048 (13)
C30.0643 (19)0.076 (2)0.075 (2)0.0132 (16)0.0058 (16)0.0190 (16)
C40.065 (2)0.100 (3)0.066 (2)0.0131 (18)0.0173 (16)0.0356 (18)
C50.081 (2)0.148 (3)0.0427 (17)0.009 (2)0.0074 (15)0.0224 (19)
C60.0678 (19)0.099 (2)0.0462 (16)0.0162 (18)0.0093 (14)0.0058 (16)
C70.0389 (12)0.0427 (12)0.0398 (12)0.0056 (10)0.0064 (10)0.0013 (10)
C80.0541 (16)0.0578 (17)0.085 (2)0.0018 (13)0.0081 (14)0.0189 (15)
C90.078 (2)0.069 (2)0.105 (3)0.0064 (17)0.0068 (19)0.0410 (18)
C100.0600 (19)0.084 (2)0.069 (2)0.0265 (17)0.0059 (15)0.0106 (17)
C110.0445 (15)0.084 (2)0.0676 (18)0.0065 (14)0.0082 (13)0.0043 (16)
C120.0507 (15)0.0580 (15)0.0571 (16)0.0025 (13)0.0030 (12)0.0009 (13)
C130.0336 (11)0.0410 (12)0.0399 (12)0.0044 (9)0.0006 (9)0.0014 (9)
C140.0359 (12)0.0401 (12)0.0520 (14)0.0024 (10)0.0040 (10)0.0032 (10)
C150.0550 (16)0.0432 (15)0.080 (2)0.0048 (11)0.0086 (15)0.0113 (13)
C160.072 (2)0.0533 (17)0.076 (2)0.0052 (14)0.0070 (17)0.0236 (14)
C170.0606 (16)0.0632 (17)0.0498 (15)0.0092 (14)0.0106 (13)0.0099 (13)
C180.0444 (13)0.0507 (14)0.0434 (13)0.0088 (11)0.0041 (10)0.0001 (11)
C190.084 (2)0.085 (2)0.081 (2)0.0113 (18)0.0471 (18)0.0079 (18)
C200.0364 (12)0.0348 (12)0.0594 (15)0.0014 (9)0.0062 (11)0.0048 (10)
C210.0411 (12)0.0447 (13)0.0476 (13)0.0002 (10)0.0110 (10)0.0062 (10)
C220.0623 (18)0.098 (2)0.0494 (16)0.0171 (16)0.0049 (13)0.0207 (15)
C230.0406 (12)0.0460 (13)0.0406 (12)0.0002 (10)0.0065 (10)0.0008 (10)
Geometric parameters (Å, º) top
Sn1—C12.109 (2)C9—C101.363 (4)
Sn1—C72.113 (2)C9—H90.9300
Sn1—O12.1360 (16)C10—C111.366 (4)
Sn1—O32.0752 (14)C10—H100.9300
Sn1—N12.1493 (17)C11—C121.387 (4)
N1—C201.286 (3)C11—H110.9300
N1—C211.475 (3)C12—H120.9300
O1—C231.290 (3)C13—C141.405 (3)
O2—C231.213 (3)C13—C181.418 (3)
O3—C131.321 (2)C14—C151.412 (3)
O4—C181.361 (3)C14—C201.435 (3)
O4—C191.418 (3)C15—C161.353 (4)
C1—C61.374 (3)C15—H150.9300
C1—C21.379 (3)C16—C171.394 (4)
C2—C31.380 (4)C16—H160.9300
C2—H20.9300C17—C181.368 (3)
C3—C41.361 (4)C17—H170.9300
C3—H30.9300C19—H19A0.9600
C4—C51.348 (5)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.381 (4)C20—H200.9300
C5—H50.9300C21—C231.525 (3)
C6—H60.9300C21—C221.527 (3)
C7—C121.376 (3)C21—H210.9800
C7—C81.378 (3)C22—H22A0.9600
C8—C91.391 (4)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
O3—Sn1—C196.86 (8)C10—C11—H11120.0
O3—Sn1—C794.80 (7)C12—C11—H11120.0
C1—Sn1—C7123.18 (9)C7—C12—C11121.0 (3)
O3—Sn1—O1158.35 (6)C7—C12—H12119.5
C1—Sn1—O193.64 (8)C11—C12—H12119.5
C7—Sn1—O195.20 (8)O3—C13—C14123.3 (2)
O3—Sn1—N182.71 (6)O3—C13—C18118.4 (2)
C1—Sn1—N1123.66 (8)C14—C13—C18118.3 (2)
C7—Sn1—N1112.92 (8)C13—C14—C15119.7 (2)
O1—Sn1—N175.71 (6)C13—C14—C20122.5 (2)
C20—N1—C21119.56 (19)C15—C14—C20117.8 (2)
C20—N1—Sn1126.04 (15)C16—C15—C14120.5 (3)
C21—N1—Sn1113.85 (14)C16—C15—H15119.8
C23—O1—Sn1119.47 (15)C14—C15—H15119.8
C13—O3—Sn1127.85 (13)C15—C16—C17120.5 (2)
C18—O4—C19118.2 (2)C15—C16—H16119.8
C6—C1—C2118.4 (2)C17—C16—H16119.8
C6—C1—Sn1121.65 (19)C18—C17—C16120.7 (3)
C2—C1—Sn1119.66 (17)C18—C17—H17119.7
C1—C2—C3121.0 (3)C16—C17—H17119.7
C1—C2—H2119.5O4—C18—C17125.5 (2)
C3—C2—H2119.5O4—C18—C13114.1 (2)
C4—C3—C2119.6 (3)C17—C18—C13120.4 (2)
C4—C3—H3120.2O4—C19—H19A109.5
C2—C3—H3120.2O4—C19—H19B109.5
C5—C4—C3120.0 (3)H19A—C19—H19B109.5
C5—C4—H4120.0O4—C19—H19C109.5
C3—C4—H4120.0H19A—C19—H19C109.5
C4—C5—C6121.1 (3)H19B—C19—H19C109.5
C4—C5—H5119.4N1—C20—C14127.0 (2)
C6—C5—H5119.4N1—C20—H20116.5
C1—C6—C5119.9 (3)C14—C20—H20116.5
C1—C6—H6120.1N1—C21—C23109.11 (18)
C5—C6—H6120.1N1—C21—C22109.03 (19)
C12—C7—C8118.5 (2)C23—C21—C22109.7 (2)
C12—C7—Sn1121.71 (18)N1—C21—H21109.7
C8—C7—Sn1119.80 (18)C23—C21—H21109.7
C7—C8—C9120.2 (3)C22—C21—H21109.7
C7—C8—H8119.9C21—C22—H22A109.5
C9—C8—H8119.9C21—C22—H22B109.5
C10—C9—C8120.6 (3)H22A—C22—H22B109.5
C10—C9—H9119.7C21—C22—H22C109.5
C8—C9—H9119.7H22A—C22—H22C109.5
C9—C10—C11119.6 (3)H22B—C22—H22C109.5
C9—C10—H10120.2O2—C23—O1124.2 (2)
C11—C10—H10120.2O2—C23—C21119.5 (2)
C10—C11—C12120.1 (3)O1—C23—C21116.3 (2)
O3—Sn1—N1—C2025.19 (18)C12—C7—C8—C90.5 (4)
C1—Sn1—N1—C2068.2 (2)Sn1—C7—C8—C9178.5 (2)
C7—Sn1—N1—C20117.34 (19)C7—C8—C9—C100.0 (5)
O1—Sn1—N1—C20153.0 (2)C8—C9—C10—C110.4 (5)
O3—Sn1—N1—C21163.36 (15)C9—C10—C11—C120.2 (5)
C1—Sn1—N1—C21103.22 (16)C8—C7—C12—C110.6 (4)
C7—Sn1—N1—C2171.22 (16)Sn1—C7—C12—C11178.3 (2)
O1—Sn1—N1—C2118.44 (14)C10—C11—C12—C70.3 (4)
O3—Sn1—O1—C2311.9 (3)Sn1—O3—C13—C1430.4 (3)
C1—Sn1—O1—C23130.87 (18)Sn1—O3—C13—C18152.16 (16)
C7—Sn1—O1—C23105.33 (18)O3—C13—C14—C15177.7 (2)
N1—Sn1—O1—C237.03 (16)C18—C13—C14—C150.3 (3)
C1—Sn1—O3—C1387.66 (18)O3—C13—C14—C200.7 (3)
C7—Sn1—O3—C13148.07 (18)C18—C13—C14—C20178.1 (2)
O1—Sn1—O3—C1330.8 (3)C13—C14—C15—C160.2 (4)
N1—Sn1—O3—C1335.53 (18)C20—C14—C15—C16178.7 (3)
O3—Sn1—C1—C61.4 (2)C14—C15—C16—C170.8 (5)
C7—Sn1—C1—C698.9 (2)C15—C16—C17—C180.9 (5)
O1—Sn1—C1—C6162.4 (2)C19—O4—C18—C174.3 (4)
N1—Sn1—C1—C687.2 (2)C19—O4—C18—C13175.4 (2)
O3—Sn1—C1—C2174.98 (19)C16—C17—C18—O4179.9 (3)
C7—Sn1—C1—C274.7 (2)C16—C17—C18—C130.4 (4)
O1—Sn1—C1—C224.0 (2)O3—C13—C18—O42.0 (3)
N1—Sn1—C1—C299.2 (2)C14—C13—C18—O4179.5 (2)
C6—C1—C2—C31.3 (4)O3—C13—C18—C17177.7 (2)
Sn1—C1—C2—C3172.5 (2)C14—C13—C18—C170.2 (3)
C1—C2—C3—C40.7 (5)C21—N1—C20—C14178.7 (2)
C2—C3—C4—C51.1 (5)Sn1—N1—C20—C1410.3 (3)
C3—C4—C5—C62.3 (6)C13—C14—C20—N19.1 (4)
C2—C1—C6—C50.1 (5)C15—C14—C20—N1172.4 (2)
Sn1—C1—C6—C5173.6 (3)C20—N1—C21—C23146.0 (2)
C4—C5—C6—C11.7 (6)Sn1—N1—C21—C2326.0 (2)
O3—Sn1—C7—C1229.5 (2)C20—N1—C21—C2294.2 (3)
C1—Sn1—C7—C12130.88 (19)Sn1—N1—C21—C2293.8 (2)
O1—Sn1—C7—C12131.3 (2)Sn1—O1—C23—O2176.5 (2)
N1—Sn1—C7—C1254.6 (2)Sn1—O1—C23—C215.7 (3)
O3—Sn1—C7—C8151.6 (2)N1—C21—C23—O2161.4 (2)
C1—Sn1—C7—C850.2 (2)C22—C21—C23—O279.3 (3)
O1—Sn1—C7—C847.6 (2)N1—C21—C23—O120.8 (3)
N1—Sn1—C7—C8124.3 (2)C22—C21—C23—O198.6 (2)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C11H11NO4)]
Mr494.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.3881 (10), 9.0304 (6), 17.3398 (12)
β (°) 95.077 (1)
V3)2088.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.825, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
16481, 4326, 3475
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.04
No. of reflections4326
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Sn1—C12.109 (2)Sn1—O32.0752 (14)
Sn1—C72.113 (2)Sn1—N12.1493 (17)
Sn1—O12.1360 (16)
 

Acknowledgements

The authors thank the Science Foundation of Binzhou University for supporting this work (grant No. BZXYQNLG200820).

References

First citationBeltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater. 18, 1174–1183.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312–318.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds