organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o376-o377

4′-[2-(Tri­fluoro­meth­yl)phen­yl]-2,2′:6′,2′′-terpyridine

aSchool of Chemical and Physical Sciences, University of KwaZulu–Natal, Scottsville 3209, South Africa
*Correspondence e-mail: stewart@ukzn.ac.za

(Received 14 January 2009; accepted 19 January 2009; online 23 January 2009)

The title compound, C22H14F3N3, is a versatile tridentate N-donor ligand consisting of a terpyridyl (terpy) molecule substituted in the 4′-position by a phenyl group, itself substituted in an ortho-position by a bulky trifluoro­methyl group. The phenyl ring is twisted as a result of steric inter­actions involving the bulky trifluoro­methyl substituent. This is reflected in the dihedral angle between the mean plane through the C atoms of the phenyl ring and the terpyridyl unit being 69.2 (1)°. The crystal structure contains no short van der Waals contacts. However, the terpy units stack in a head-to-tail orientation perpendicular to the c axis. The structure is is loosely stabilized by ππ inter­actions between the terminal pyridine rings of adjacent mol­ecules along the stack. The perpendicular distance between the mean planes through the terpy moieties of adjacent mol­ecules is 3.4 (1) Å.

Related literature

For related structures, see: Bessel et al. (1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]); Brandt et al. (1954[Brandt, W. W., Dwyer, F. P. & Gyarfas, E. C. (1954). Chem. Rev. 54, 959-1017.]); Dwyer & Mellor (1964[Dwyer, F. P. & Mellor, D. P. (1964). In Chelating Agents and Metal Chelates. Orlando: Academic Press.]); Field et al. (2002[Field, J. S., Haines, R. J., McMillin, D. R. & Summerton, G. C. (2002). J. Chem. Soc. Dalton Trans. pp. 1369-1376.]); Gillard (1983[Gillard, R. D. (1983). Coord. Chem. Rev. 50, 303-309.]); Lindoy & Livingstone (1967[Lindoy, L. F. & Livingstone, S. E. (1967). Coord. Chem. Rev. 2, 173-193.]); Morgan & Burstall (1932[Morgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20-30.], 1934[Morgan, G. T. & Burstall, F. H. (1934). J. Chem. Soc. pp. 1498-1500.], 1938[Morgan, G. T. & Burstall, F. H. (1938). J. Chem. Soc. pp. 1675-1678.]); Serpone et al. (1983[Serpone, N., Ponterini, G., Jamieson, M. A., Bolletta, F. & Maestri, M. (1983). Coord. Chem. Rev. 50, 209-302.]); Storrier et al. (1997[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3011-3028.]). For background, see Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.], 1992[Constable, E. C., Khan, F. K., Marquez, V. E. & Raithby, P. R. (1992). Acta Cryst. C48, 932-934.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Kröhnke (1976[Kröhnke, F. (1976). Synthesis, pp. 1-24.]); Thummel & Jahng (1985[Thummel, R. P. & Jahng, Y. (1985). J. Org. Chem. 50, 2407-2013.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14F3N3

  • Mr = 377.36

  • Triclinic, [P \overline 1]

  • a = 7.767 (5) Å

  • b = 10.923 (3) Å

  • c = 11.748 (3) Å

  • α = 75.64 (2)°

  • β = 74.03 (4)°

  • γ = 72.93 (4)°

  • V = 900.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.60 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.930, Tmax = 0.969

  • 3953 measured reflections

  • 3155 independent reflections

  • 2840 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.06

  • 3155 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The tridentate coordinating ligand 2,2':6',2''-terpyridine (terpy) was first isolated by Morgan & Burstall (1932, 1934, 1938) as one of the numerous products from the reaction of pyridine with iron(III) chloride.

Since the 1930s, numerous groups have examined terpy, prompted by the use of related ligands 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen), in photochemical and photophysical processes (Brandt et al., 1954; Dwyer & Mellor, 1964; Gillard, 1983; Lindoy & Livingstone, 1967; Serpone et al., 1983).

Reported here is the crystal structure of the tridentate terpyridyl ligand substituted in the 4'-position by a phenyl group, itself substituted in an ortho-position by a bulky trifluoromethyl group. Ortho-substitution of the 4'-phenyl ring was chosen since steric interactions between the bulky group and the 3'(5')-proton on the central pyridine ring are expected to force the 4'-substituent to rotate around the interannular bond i.e. the ligand will become non-planar.

In the crystal structure of 4'-(2'''-trifluoromethylphenyl)-2, 2':6',2''-terpyridine, the three pyridyl rings of the terpyridyl moiety are essentially co-planar as is preferred for maximum conjugative interaction (Thummel & Jahng, 1985). This is reflected by torsion angles between the two outer rings and the central ring of -6.5 (2)° and 9.9 (2)° for N1—C1—C6—C7 and C9—C10—C11—N3 respectively.

The terminal pyridine rings adopt a transtrans conformation about the interannular bonds C1—C6 and C10—C11. Several derivatized terpy ligands have been found to adopt this transtrans geometry by X-ray crystal analysis (Constable et al., 1990) which is more energetically favourable when compared to other conformations as a result of the minimal nitrogen lone pair repulsions (Thummel & Jahng, 1985).

The interannular bond distances C1—C6 and C10—C11 are 1.493 (2) Å and 1.484 (2) Å respectively; these distances are comparable with the averaged values of 1.49 (1) Å and 1.49 (1) Å measured for the terpy (Bessel et al., 1992) and 4'-(Ph)-terpy (Constable et al., 1990) ligands respectively.

As previously postulated, the o-tolyl moiety is twisted about the interannular bond C8—C16, as reflected in a dihedral angle between the mean plane through the carbon atoms of the 4'-substituted and the terpyridyl moiety of 69.2 (1)°. This angle may be compared with those adopted by terpyridyl ligands containing similar substituents in the 4'-position of the terpy moiety in molecules such as the free 4'-phenyl-terpyridine (10.9°) (Constable et al., 1990), 6,6''-dibromo-4'-phenyl-terpyridine (35.1°) (Constable et al, 1992) and 4'-(4-anilino)-terpyridine (27.2°) (Storrier et al., 1997). The larger angle witnessed in the title compound is consistent with the bulky nature of the trifluoro group and the fact that it substitutes the ortho-position of the phenyl moiety. Clearly, substitution of a trifluoro group in the ortho-position of the 4'-phenyl group causes a larger rotation about the interannular bond because of steric interactions between the CF3 group and a hydrogen atom of the central pyridine ring that is also ortho with respect to the interannular bond.

There are no short van der Waals contacts less than the sum of the van der Waals radii in this system. However it is worth noting, that the terpy units stack in a head to tail orientation perpendicular to the [c]-axis, presumably as a result of minimizing steric interactions between the bulky trifluoromethyl substituents on adjacent molecules. However it is clear that this arrangement is not entirely successful and that poor packing does result from the presence of these bulky substituents reflected in the large solvent accessible void of 31 Å3. This packing orientation allows for ππ interactions between the terminal pyridine rings of adjacent molecules along the stack. The perpendicular distance between the mean planes through the terpy moieties of adjacent molecules is 3.4 (1)Å which is short enough to support ππ interactions being well within the upper distance limit of 3.8 Å for ππ interactions between organic molecules (Hunter & Sanders, 1990).

The stucture of the title compound is shown in Fig. 1. Fig. 2 shows a view perpendicular to the mean plane through the atoms comprising the terpyridyl (terpy) moiety of two adjacent terpy units in the crystals of the 4'-(2'''-trifluoromethylphenyl)-2, 2':6', 2''-terpyridine ligand. Note that the successive molecules are related by a centre of inversion.

Related literature top

For related literature, see: Bessel et al. (1992); Brandt et al. (1954); Constable et al. (1990, 1992); Dwyer & Mellor (1964); Field et al. (2002); Gillard (1983); Hunter & Sanders (1990); Kröhnke (1976); Lindoy & Livingstone (1967); Morgan & Burstall (1932, 1934, 1938); Serpone et al. (1983); Storrier et al. (1997); Thummel & Jahng (1985). [From the Section Editors: It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.]

Experimental top

4'-(2'''-trifluoromethylphenyl)-2,2':6',2''-terpyridine was synthesized by the method of Kröhnke (Field et al., 2002; Kröhnke, 1976).

N-{1-(2'-pyridyl)-1-oxo-2-ethyl}pyridinium iodide (0.68 g, 2.2 mmol) and ammonium acetate (10 g, excess) were added to a suspension of 2-R-{3-(2-pyridyl)-3-oxopropenyl}benzene (2.0 mmol) in absolute ethanol (8 ml) and the mixture heated at reflux for 40 min. An off-white solid precipitated on cooling. This was collected by filtration, washed with 50% aqueous ethanol and dried in vacuo. Recrystallization from ethanol afforded colourless crystals of the desired ligands.

Yield: (0.41 g, 54%). m.p. (148 °C). Anal. (Calcd. For C22H14F3N3: C 70.0; H 3.7; N 11.1. Found: C 69.9; H 3.9; N 11.0%). MS(EI) m/z: 377, M+). 1H NMR (CDCl3): [δ 8.72 (m, 2H, H6,6''); 8.70 (m, 2H, H3,3''); 8.54 (s, 2H, H3',5'); 7.84 (m, 2H, H4,4''); 7.54 (m, 4H, C6H4); 7.35 (m, 2 H, H5,5'')]. UV/vis (CH3CN): λmax/nm (ε/M-1 cm-1): [303 (sh, 1.3 × 104); 277 (2.9 × 104); 239 (3.4 × 104); 208 (3.6 × 104)].

Refinement top

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of 4'-(2'''-trifluoromethylphenyl)-2,2':6',2''-terpyridine, showing 50% probability displacement ellipsoids and atomic numbering.
[Figure 2] Fig. 2. A view perpendicular to the mean plane through the atoms comprising the terpyridyl (terpy) moiety of two adjacent terpy units in the crystals of the 4'-(2'''-trifluoromethylphenyl)-2, 2':6', 2''-terpyridine ligand. Note that the successive molecules are related by a centre of inversion.
4'-[2-(Trifluoromethyl)phenyl]-2,2':6',2''-terpyridine top
Crystal data top
C22H14F3N3Z = 2
Mr = 377.36F(000) = 388
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Melting point: 421.15 K
a = 7.767 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.923 (3) ÅCell parameters from 3155 reflections
c = 11.748 (3) Åθ = 2.4–25°
α = 75.64 (2)°µ = 0.11 mm1
β = 74.03 (4)°T = 293 K
γ = 72.93 (4)°Square planar, colourless
V = 900.8 (7) Å30.60 × 0.30 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
3155 independent reflections
Radiation source: Enhance (Mo)X-Ray Source2840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.4190 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω/2θ scansh = 49
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2003)
k = 1212
Tmin = 0.930, Tmax = 0.969l = 1313
3953 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.255P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C22H14F3N3γ = 72.93 (4)°
Mr = 377.36V = 900.8 (7) Å3
Triclinic, P1Z = 2
a = 7.767 (5) ÅMo Kα radiation
b = 10.923 (3) ŵ = 0.11 mm1
c = 11.748 (3) ÅT = 293 K
α = 75.64 (2)°0.60 × 0.30 × 0.30 mm
β = 74.03 (4)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
3155 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2003)
2840 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.969Rint = 0.032
3953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
3155 reflectionsΔρmin = 0.32 e Å3
254 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 170. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5317 (2)0.91636 (13)0.35582 (14)0.0845 (5)
F20.71339 (15)0.74840 (14)0.42847 (12)0.0725 (4)
F30.4702 (2)0.83636 (18)0.54344 (13)0.0926 (6)
N11.1281 (2)0.32563 (14)0.24320 (14)0.0467 (4)
N21.02318 (17)0.64584 (13)0.06447 (11)0.0340 (3)
N30.79020 (19)0.97634 (14)0.03608 (13)0.0426 (4)
C11.1511 (2)0.42440 (15)0.15132 (14)0.0357 (4)
C21.3124 (2)0.41901 (18)0.06241 (16)0.0429 (4)
H21.32490.48940.00020.0564 (15)*
C31.4538 (2)0.30759 (19)0.06833 (18)0.0511 (5)
H31.56380.30260.01060.0564 (15)*
C41.4302 (3)0.20463 (19)0.1601 (2)0.0536 (5)
H41.52170.12750.16480.0564 (15)*
C51.2666 (3)0.21853 (19)0.2456 (2)0.0549 (5)
H51.25180.14910.30880.0564 (15)*
C60.9941 (2)0.54241 (15)0.14861 (13)0.0333 (3)
C70.8263 (2)0.54237 (16)0.23130 (14)0.0363 (4)
H70.80880.46740.28670.0564 (15)*
C80.6857 (2)0.65547 (16)0.22996 (13)0.0341 (4)
C90.7156 (2)0.76331 (15)0.14389 (14)0.0345 (4)
H90.62480.84090.14130.0564 (15)*
C100.8849 (2)0.75402 (15)0.06062 (13)0.0328 (4)
C110.9179 (2)0.86326 (15)0.04004 (14)0.0334 (4)
C121.0712 (2)0.84656 (17)0.13472 (15)0.0410 (4)
H121.15680.76660.13540.0564 (15)*
C131.0949 (2)0.94940 (19)0.22719 (16)0.0476 (4)
H131.19720.94040.29090.0564 (15)*
C140.9649 (3)1.06607 (18)0.22414 (17)0.0495 (4)
H140.97671.13750.28560.0564 (15)*
C150.8167 (3)1.07390 (18)0.12736 (17)0.0492 (4)
H150.72901.15290.12570.0564 (15)*
C160.5028 (2)0.65338 (15)0.31581 (13)0.0341 (4)
C170.4308 (2)0.72287 (15)0.41048 (14)0.0351 (4)
C180.2588 (2)0.71521 (17)0.48555 (15)0.0414 (4)
H180.21200.76120.54880.0564 (15)*
C190.1581 (2)0.64052 (19)0.46690 (16)0.0473 (4)
H190.04260.63730.51630.0564 (15)*
C200.2281 (3)0.5707 (2)0.37529 (17)0.0526 (5)
H200.16060.51920.36310.0564 (15)*
C210.3993 (2)0.57662 (19)0.30069 (16)0.0459 (4)
H210.44590.52820.23920.0564 (15)*
C220.5349 (2)0.80526 (19)0.43493 (16)0.0481 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1039 (11)0.0570 (8)0.1051 (11)0.0432 (8)0.0206 (9)0.0113 (7)
F20.0405 (6)0.1046 (10)0.0925 (10)0.0248 (6)0.0147 (6)0.0448 (8)
F30.0829 (10)0.1468 (14)0.0763 (9)0.0633 (10)0.0233 (7)0.0738 (10)
N10.0386 (8)0.0444 (8)0.0533 (9)0.0056 (6)0.0115 (6)0.0057 (7)
N20.0272 (6)0.0400 (7)0.0361 (7)0.0077 (5)0.0057 (5)0.0112 (6)
N30.0359 (7)0.0409 (8)0.0466 (8)0.0062 (6)0.0045 (6)0.0089 (6)
C10.0325 (8)0.0396 (9)0.0391 (8)0.0072 (6)0.0108 (6)0.0128 (7)
C20.0349 (8)0.0485 (10)0.0443 (9)0.0048 (7)0.0064 (7)0.0154 (7)
C30.0331 (9)0.0588 (11)0.0607 (11)0.0009 (8)0.0070 (8)0.0257 (9)
C40.0388 (9)0.0459 (10)0.0775 (13)0.0035 (8)0.0220 (9)0.0197 (9)
C50.0469 (10)0.0452 (10)0.0688 (13)0.0050 (8)0.0202 (9)0.0027 (9)
C60.0296 (8)0.0401 (8)0.0333 (8)0.0085 (6)0.0074 (6)0.0113 (6)
C70.0326 (8)0.0414 (9)0.0351 (8)0.0102 (6)0.0063 (6)0.0071 (6)
C80.0277 (7)0.0436 (9)0.0335 (8)0.0112 (6)0.0034 (6)0.0121 (6)
C90.0268 (7)0.0377 (8)0.0393 (8)0.0069 (6)0.0043 (6)0.0120 (6)
C100.0268 (7)0.0396 (8)0.0353 (8)0.0099 (6)0.0053 (6)0.0119 (6)
C110.0267 (7)0.0396 (8)0.0372 (8)0.0093 (6)0.0081 (6)0.0105 (6)
C120.0301 (8)0.0476 (9)0.0420 (9)0.0079 (7)0.0043 (6)0.0081 (7)
C130.0384 (9)0.0601 (11)0.0399 (9)0.0157 (8)0.0014 (7)0.0046 (8)
C140.0521 (10)0.0501 (10)0.0454 (10)0.0181 (8)0.0133 (8)0.0029 (8)
C150.0485 (10)0.0401 (9)0.0533 (10)0.0060 (8)0.0103 (8)0.0053 (8)
C160.0275 (7)0.0402 (8)0.0340 (8)0.0107 (6)0.0053 (6)0.0043 (6)
C170.0270 (7)0.0403 (8)0.0362 (8)0.0086 (6)0.0045 (6)0.0058 (6)
C180.0302 (8)0.0497 (9)0.0382 (8)0.0086 (7)0.0001 (6)0.0070 (7)
C190.0303 (8)0.0657 (11)0.0426 (9)0.0209 (8)0.0033 (7)0.0019 (8)
C200.0468 (10)0.0716 (13)0.0498 (10)0.0368 (9)0.0091 (8)0.0042 (9)
C210.0462 (9)0.0571 (11)0.0415 (9)0.0253 (8)0.0032 (7)0.0132 (8)
C220.0403 (9)0.0588 (11)0.0489 (10)0.0186 (8)0.0036 (7)0.0235 (9)
Geometric parameters (Å, º) top
F1—C221.331 (2)C9—C101.400 (2)
F2—C221.332 (2)C9—H90.9300
F3—C221.325 (2)C10—C111.484 (2)
N1—C51.337 (2)C11—C121.390 (2)
N1—C11.338 (2)C12—C131.372 (2)
N2—C61.333 (2)C12—H120.9300
N2—C101.344 (2)C13—C141.376 (3)
N3—C151.330 (2)C13—H130.9300
N3—C111.340 (2)C14—C151.377 (3)
C1—C21.389 (2)C14—H140.9300
C1—C61.493 (2)C15—H150.9300
C2—C31.381 (3)C16—C211.388 (2)
C2—H20.9300C16—C171.398 (2)
C3—C41.368 (3)C17—C181.397 (2)
C3—H30.9300C17—C221.493 (2)
C4—C51.381 (3)C18—C191.372 (3)
C4—H40.9300C18—H180.9300
C5—H50.9300C19—C201.370 (3)
C6—C71.395 (2)C19—H190.9300
C7—C81.388 (2)C20—C211.387 (3)
C7—H70.9300C20—H200.9300
C8—C91.380 (2)C21—H210.9300
C8—C161.501 (2)
C5—N1—C1117.21 (16)C13—C12—C11119.27 (16)
C6—N2—C10118.17 (13)C13—C12—H12120.4
C15—N3—C11116.89 (15)C11—C12—H12120.4
N1—C1—C2122.33 (15)C12—C13—C14118.93 (16)
N1—C1—C6116.64 (15)C12—C13—H13120.5
C2—C1—C6121.03 (15)C14—C13—H13120.5
C3—C2—C1119.02 (17)C13—C14—C15118.00 (16)
C3—C2—H2120.5C13—C14—H14121.0
C1—C2—H2120.5C15—C14—H14121.0
C4—C3—C2119.23 (17)N3—C15—C14124.54 (17)
C4—C3—H3120.4N3—C15—H15117.7
C2—C3—H3120.4C14—C15—H15117.7
C3—C4—C5118.07 (17)C21—C16—C17117.94 (14)
C3—C4—H4121.0C21—C16—C8117.85 (14)
C5—C4—H4121.0C17—C16—C8124.21 (14)
N1—C5—C4124.10 (19)C18—C17—C16120.11 (15)
N1—C5—H5118.0C18—C17—C22118.44 (15)
C4—C5—H5118.0C16—C17—C22121.44 (14)
N2—C6—C7122.53 (15)C19—C18—C17120.60 (16)
N2—C6—C1116.83 (14)C19—C18—H18119.7
C7—C6—C1120.63 (15)C17—C18—H18119.7
C8—C7—C6119.27 (15)C20—C19—C18119.89 (15)
C8—C7—H7120.4C20—C19—H19120.1
C6—C7—H7120.4C18—C19—H19120.1
C9—C8—C7118.43 (14)C19—C20—C21120.07 (16)
C9—C8—C16122.38 (14)C19—C20—H20120.0
C7—C8—C16119.04 (15)C21—C20—H20120.0
C8—C9—C10118.93 (14)C20—C21—C16121.37 (17)
C8—C9—H9120.5C20—C21—H21119.3
C10—C9—H9120.5C16—C21—H21119.3
N2—C10—C9122.57 (15)F3—C22—F2105.78 (17)
N2—C10—C11116.41 (13)F3—C22—F1107.02 (17)
C9—C10—C11120.99 (14)F2—C22—F1104.80 (16)
N3—C11—C12122.37 (15)F3—C22—C17112.81 (14)
N3—C11—C10116.52 (14)F2—C22—C17113.43 (15)
C12—C11—C10121.08 (14)F1—C22—C17112.38 (16)
C5—N1—C1—C21.2 (2)C9—C10—C11—C12168.23 (14)
C5—N1—C1—C6178.95 (15)N3—C11—C12—C130.7 (2)
N1—C1—C2—C30.4 (2)C10—C11—C12—C13178.79 (15)
C6—C1—C2—C3179.75 (14)C11—C12—C13—C140.7 (3)
C1—C2—C3—C41.2 (3)C12—C13—C14—C150.3 (3)
C2—C3—C4—C52.0 (3)C11—N3—C15—C140.0 (3)
C1—N1—C5—C40.4 (3)C13—C14—C15—N30.1 (3)
C3—C4—C5—N11.2 (3)C9—C8—C16—C21109.60 (18)
C10—N2—C6—C70.5 (2)C7—C8—C16—C2165.9 (2)
C10—N2—C6—C1179.33 (12)C9—C8—C16—C1770.9 (2)
N1—C1—C6—N2173.37 (13)C7—C8—C16—C17113.59 (18)
C2—C1—C6—N26.5 (2)C21—C16—C17—C180.8 (2)
N1—C1—C6—C76.5 (2)C8—C16—C17—C18179.76 (14)
C2—C1—C6—C7173.69 (14)C21—C16—C17—C22178.55 (16)
N2—C6—C7—C82.7 (2)C8—C16—C17—C220.9 (2)
C1—C6—C7—C8177.13 (13)C16—C17—C18—C190.5 (2)
C6—C7—C8—C91.9 (2)C22—C17—C18—C19179.83 (16)
C6—C7—C8—C16177.55 (13)C17—C18—C19—C201.3 (3)
C7—C8—C9—C100.9 (2)C18—C19—C20—C210.7 (3)
C16—C8—C9—C10174.63 (13)C19—C20—C21—C160.6 (3)
C6—N2—C10—C92.5 (2)C17—C16—C21—C201.3 (3)
C6—N2—C10—C11175.44 (12)C8—C16—C21—C20179.21 (17)
C8—C9—C10—N23.2 (2)C18—C17—C22—F315.5 (2)
C8—C9—C10—C11174.63 (13)C16—C17—C22—F3163.81 (17)
C15—N3—C11—C120.4 (2)C18—C17—C22—F2135.79 (17)
C15—N3—C11—C10178.53 (14)C16—C17—C22—F243.6 (2)
N2—C10—C11—N3172.12 (13)C18—C17—C22—F1105.57 (18)
C9—C10—C11—N39.9 (2)C16—C17—C22—F175.1 (2)
N2—C10—C11—C129.7 (2)

Experimental details

Crystal data
Chemical formulaC22H14F3N3
Mr377.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.767 (5), 10.923 (3), 11.748 (3)
α, β, γ (°)75.64 (2), 74.03 (4), 72.93 (4)
V3)900.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.930, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3953, 3155, 2840
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.06
No. of reflections3155
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors acknowledge financial support from the South African National Research Foundation and the Department of Labour. We also extend our appreciation to Professor John Field for helpful discussions and guidance.

References

First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science
First citationBrandt, W. W., Dwyer, F. P. & Gyarfas, E. C. (1954). Chem. Rev. 54, 959–1017.  CrossRef CAS Web of Science
First citationConstable, E. C., Khan, F. K., Marquez, V. E. & Raithby, P. R. (1992). Acta Cryst. C48, 932–934.  CSD CrossRef CAS Web of Science IUCr Journals
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science
First citationDwyer, F. P. & Mellor, D. P. (1964). In Chelating Agents and Metal Chelates. Orlando: Academic Press.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationField, J. S., Haines, R. J., McMillin, D. R. & Summerton, G. C. (2002). J. Chem. Soc. Dalton Trans. pp. 1369–1376.  Web of Science CSD CrossRef
First citationGillard, R. D. (1983). Coord. Chem. Rev. 50, 303–309.  CrossRef CAS
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science
First citationKröhnke, F. (1976). Synthesis, pp. 1–24.
First citationLindoy, L. F. & Livingstone, S. E. (1967). Coord. Chem. Rev. 2, 173–193.  CrossRef CAS
First citationMorgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20–30.  CrossRef
First citationMorgan, G. T. & Burstall, F. H. (1934). J. Chem. Soc. pp. 1498–1500.  CrossRef
First citationMorgan, G. T. & Burstall, F. H. (1938). J. Chem. Soc. pp. 1675–1678.  CrossRef
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
First citationSerpone, N., Ponterini, G., Jamieson, M. A., Bolletta, F. & Maestri, M. (1983). Coord. Chem. Rev. 50, 209–302.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStorrier, G. D., Colbran, S. B. & Craig, D. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3011–3028.  CSD CrossRef Web of Science
First citationThummel, R. P. & Jahng, Y. (1985). J. Org. Chem. 50, 2407–2013.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o376-o377
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds