metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[1-(2-Amino-2-methyl­propyl­imino)eth­yl]phenolato-κ3N,N′,O}dioxidovanadium(V)

aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland
*Correspondence e-mail: greg@chem.univ.gda.pl

(Received 10 December 2008; accepted 16 December 2008; online 14 January 2009)

In the crystal structure of the title compound, [V(C12H17N2O)O2], the vanadium(V) centre is five-coordinate in a distorted square-pyramidal environment. The three atoms of the deprotonated Schiff base and a double-bonded O atom comprise the basal plane. N—H⋯O hydrogen bonds lead to a zigzag chain structure parallel to [001].

Related literature

For general background, see: Carter-Franklin et al. (2003[Carter-Franklin, J. N., Parrish, J. D., Tchirret-Guth, R. A., Little, R. D. & Butler, A. (2003). J. Am. Chem. Soc. 125, 3688-3689.]); Eady (2003[Eady, R. R. (2003). Coord. Chem. Rev. 237, 23-30.]); Evangelou (2002[Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249-265.]); Mendz (1991[Mendz, G. L. (1991). Arch. Biochem. Biophys. 291, 201-211.]); Mokry & Carrano (1993[Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119-6121.]); Parekh et al. (2006[Parekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. Chem. 40, 494-497.]); Rehder et al. (2002[Rehder, D., Costa Pessoa, J., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem. 7, 384-396.], 2003[Rehder, D., Antoni, G., Licini, G. M., Schulzke, C. & Meier, B. (2003). Coord. Chem. Rev. 237, 53-63.]); Shahzadi et al. (2007[Shahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386-393.]). For related structures, see: Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.], 2007[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559-2568.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For synthesis, see: Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.]). For the calculation of square-pyramidal geometries, see: Holmes (1984[Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C12H17N2O)O2]

  • Mr = 288.22

  • Orthorhombic, P n a 21

  • a = 11.1198 (6) Å

  • b = 15.7408 (8) Å

  • c = 7.6448 (3) Å

  • V = 1338.10 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 295 (2) K

  • 0.20 × 0.04 × 0.04 mm

Data collection
  • Oxford Diffraction Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.941, Tmax = 0.964

  • 11574 measured reflections

  • 2126 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.051

  • S = 0.83

  • 2126 reflections

  • 167 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 849 Friedel pairs

  • Flack parameter: 0.23 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O14i 0.90 2.08 2.942 (4) 159
N11—H11B⋯O15ii 0.90 2.29 3.173 (4) 168
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Vanadium(IV) and (V) complexes with Schiff bases are excellent model compounds for some biological enzymes, viz.: haloperoxidases (Carter-Franklin et al., 2003; Rehder et al., 2003), phosphomutases (Mendz, 1991) and nitrogenases (Eady, 2003). Their various pharmocological properties also has been reported, especially as an antidiabetes (Rehder et al., 2002), anticancer (Evangelou, 2002), antifungal and antibacterial (Parekh et al., 2006; Shahzadi et al., 2007) agents.

The crystal structure of (I) consists of monomeric complex molecules (Fig. 1) with a distorted square pyramidal geometry about vanadium with O15 at the apex. By the use of the dihedral angle method and the unit bond lengths, it was estimated that the structure is displaced by 76.1% along the Berry coordinate from the ideal trigonal bipyramidal (0%) toward the ideal square pyramidal (100%) geometry (Holmes, 1984). In contrast to this structure, the similar monomeric complex, but derived from 4,6-dimetoxysalicylaldehyde (Kwiatkowski et al., 2003), reveals a distorted trigonal bipyramidal environment with the degree of the distortion of 41.2% along the Berry coordinate. The vanadium atom is displaced from the mean plane passing through the four basal atoms, N8, N11, O13 and O14, by ca 0.51 (1) Å towards O15. The bond lengths V12—N8 of 2.171 (3) Å, V12—N11 of 2.118 (2) Å, V12—O13 of 1.883 (2) Å, V12—O14 of 1.635 (2) Å, V12—O15 of 1.615 (2) Å and the O=V=O angle of 109.9° are similar to the values in other cis-VO2+ complexes (Mokry & Carrano, 1993; Kwiatkowski et al., 2003; Kwiatkowski et al., 2007). The six-membered chelate ring (V12, O13, C1, C2, C7, N8) is concluded to be an envelope on V12 atom. The ring puckering analysis shows that the five-membered chelate ring defined by V12, N11, C10, C9, N8 atoms adopts a twisted conformation on C10 and N11 atoms, with P = 282.7 (2)° and Tau(M) = 49.9 (2)° for reference bond V12—N8 (Rao et al., 1981).

The crystal structure of the monomeric complex (I) is stabilized by the C—H···O, N—H···O hydrogen bonds and C—H···π interactions. Hydrogen bonds between dioxidovanadium oxygen atoms and nitrogen and carbon atoms of neighbouring molecules result in formation of infinite chains and closed loops, extending in the a direction (Tables 1 and 2, Fig. 2).

Related literature top

For general background, see: Carter-Franklin et al. (2003); Eady (2003); Evangelou (2002); Mendz (1991); Mokry & Carrano (1993); Parekh et al. (2006); Rehder et al. (2002, 2003); Shahzadi et al. (2007). For related structures, see: Kwiatkowski et al. (2003, 2007); Rao et al. (1981). For synthesis, see: Kwiatkowski et al. (2003). For the calculation of square-pyramidal geometries, see: Holmes (1984).

Experimental top

The complex (I) were obtained in a template/complexation reactions analogous to those described for preparation of dioxidovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A solution of 1 mmol of 2-methyl-1,2-diaminopropane in 10 ml of absolute ethanol was added under stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (1 mmol) in 50 ml of absolute EtOH producing a yellow suspension of the intermediate. 2-Acetylphenol (1 mmol) dissolved in absolute EtOH was added to the aforementioned suspension. After refluxing (70 ml) of the resulting mixture for 2 h and its cooling to room temperature the separated solids were filtered off, washed several times with EtOH and dried over molecular sieves.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and with N–H distances of 0.90Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex (I), with displacement ellipsoids drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the crystal structure viewed approximately along a axis. The C—H···O and N—H···O hydrogen bonds are represented by dashed lines and the C—H···π interactions are represented by dotted lines.
{2-[1-(2-Amino-2-methylpropylimino)ethyl]phenolato- κ3N,N',O}dioxidovanadium(V) top
Crystal data top
[V(C12H17N2O)O2]F(000) = 600
Mr = 288.22Dx = 1.431 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2126 reflections
a = 11.1198 (6) Åθ = 3.2–25.1°
b = 15.7408 (8) ŵ = 0.74 mm1
c = 7.6448 (3) ÅT = 295 K
V = 1338.10 (11) Å3Needle, white
Z = 40.2 × 0.04 × 0.04 mm
Data collection top
Oxford Diffraction Ruby CCD
diffractometer
2126 independent reflections
Radiation source: Enhance (Mo) X-ray Source1387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1818
Tmin = 0.941, Tmax = 0.964l = 97
11574 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0211P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2126 reflectionsΔρmax = 0.19 e Å3
167 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 849 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.23 (2)
Crystal data top
[V(C12H17N2O)O2]V = 1338.10 (11) Å3
Mr = 288.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.1198 (6) ŵ = 0.74 mm1
b = 15.7408 (8) ÅT = 295 K
c = 7.6448 (3) Å0.2 × 0.04 × 0.04 mm
Data collection top
Oxford Diffraction Ruby CCD
diffractometer
2126 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1387 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.964Rint = 0.071
11574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.051Δρmax = 0.19 e Å3
S = 0.83Δρmin = 0.16 e Å3
2126 reflectionsAbsolute structure: Flack (1983), 849 Friedel pairs
167 parametersAbsolute structure parameter: 0.23 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3317 (3)0.3973 (2)0.5333 (4)0.0380 (8)
C20.2695 (3)0.37563 (19)0.6865 (4)0.0354 (8)
C30.3314 (3)0.37812 (17)0.8474 (6)0.0512 (8)
H3A0.29030.36510.94990.061*
C40.4498 (3)0.3992 (2)0.8561 (6)0.0560 (10)
H4A0.48870.40120.96370.067*
C50.5121 (3)0.4175 (2)0.7045 (6)0.0602 (11)
H5A0.59310.43190.71010.072*
C60.4544 (3)0.4145 (2)0.5448 (5)0.0510 (10)
H6A0.49820.42400.44310.061*
C70.1437 (3)0.34815 (19)0.6801 (4)0.0399 (8)
N80.0753 (2)0.36544 (15)0.5463 (3)0.0378 (7)
C90.0510 (3)0.3371 (2)0.5463 (4)0.0422 (9)
H9A0.09560.36770.63530.051*
H9B0.05490.27700.57330.051*
C100.1063 (3)0.3534 (2)0.3683 (4)0.0407 (9)
N110.06106 (19)0.44045 (15)0.3205 (5)0.0408 (6)
H11A0.09460.47900.39250.049*
H11B0.08440.45280.21070.049*
V120.12859 (4)0.45059 (3)0.33674 (6)0.03758 (15)
O130.27910 (18)0.39910 (13)0.3758 (3)0.0456 (6)
O140.1359 (2)0.45725 (14)0.1236 (2)0.0467 (6)
O150.1372 (2)0.54432 (13)0.4218 (2)0.0483 (6)
C260.0950 (3)0.29854 (18)0.8337 (6)0.0592 (9)
H26A0.01620.27760.80600.089*
H26B0.09050.33490.93430.089*
H26C0.14740.25160.85840.089*
C270.0620 (3)0.2904 (2)0.2305 (5)0.0536 (9)
H27A0.02430.28860.23200.080*
H27B0.08900.30810.11700.080*
H27C0.09330.23490.25590.080*
C280.2434 (3)0.3536 (2)0.3770 (5)0.0699 (12)
H28A0.26970.39600.45870.105*
H28B0.27130.29880.41430.105*
H28C0.27560.36610.26330.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.0260 (19)0.049 (2)0.0093 (17)0.0054 (19)0.0025 (17)
C20.041 (2)0.0303 (19)0.035 (2)0.0077 (17)0.0034 (17)0.0038 (16)
C30.064 (2)0.0462 (19)0.043 (2)0.0081 (17)0.007 (3)0.005 (3)
C40.058 (3)0.056 (2)0.054 (3)0.0082 (19)0.009 (3)0.016 (3)
C50.039 (2)0.053 (3)0.089 (3)0.0058 (19)0.002 (3)0.005 (2)
C60.050 (3)0.051 (2)0.052 (2)0.001 (2)0.009 (2)0.003 (2)
C70.056 (2)0.0311 (19)0.033 (2)0.0004 (19)0.0127 (18)0.0038 (14)
N80.0384 (19)0.0394 (17)0.0355 (16)0.0009 (14)0.0112 (14)0.0026 (14)
C90.053 (3)0.039 (2)0.0346 (19)0.0049 (19)0.0174 (18)0.0038 (17)
C100.038 (2)0.0445 (19)0.040 (2)0.0079 (17)0.0074 (17)0.0095 (18)
N110.0423 (14)0.0400 (14)0.0400 (13)0.0048 (13)0.0037 (18)0.0058 (18)
V120.0404 (3)0.0357 (3)0.0366 (3)0.0011 (3)0.0062 (4)0.0047 (4)
O130.0417 (13)0.0517 (14)0.0434 (17)0.0064 (10)0.0104 (11)0.0074 (12)
O140.0508 (14)0.0579 (14)0.0315 (11)0.0065 (16)0.0078 (11)0.0070 (11)
O150.0559 (16)0.0353 (13)0.0538 (12)0.0029 (13)0.0005 (11)0.0044 (11)
C260.082 (3)0.0554 (19)0.0399 (16)0.0127 (18)0.015 (3)0.005 (3)
C270.067 (2)0.047 (2)0.0469 (18)0.008 (2)0.013 (2)0.007 (2)
C280.046 (2)0.085 (3)0.078 (3)0.017 (2)0.004 (2)0.004 (3)
Geometric parameters (Å, º) top
C1—O131.339 (4)C10—N111.504 (4)
C1—C61.393 (5)C10—C281.527 (4)
C1—C21.402 (4)C10—C271.529 (4)
C2—C31.410 (5)N11—V122.118 (2)
C2—C71.465 (4)N11—H11A0.9000
C3—C41.359 (4)N11—H11B0.9000
C3—H3A0.9300V12—O151.6151 (19)
C4—C51.380 (5)V12—O141.6352 (18)
C4—H4A0.9300V12—O131.883 (2)
C5—C61.380 (4)C26—H26A0.9600
C5—H5A0.9300C26—H26B0.9600
C6—H6A0.9300C26—H26C0.9600
C7—N81.304 (4)C27—H27A0.9600
C7—C261.510 (4)C27—H27B0.9600
N8—C91.473 (4)C27—H27C0.9600
N8—V122.171 (3)C28—H28A0.9600
C9—C101.515 (4)C28—H28B0.9600
C9—H9A0.9700C28—H28C0.9600
C9—H9B0.9700
O13—C1—C6118.7 (3)C10—N11—V12112.76 (17)
O13—C1—C2122.7 (3)C10—N11—H11A109.0
C6—C1—C2118.5 (3)V12—N11—H11A109.0
C1—C2—C3118.7 (3)C10—N11—H11B109.0
C1—C2—C7121.0 (3)V12—N11—H11B109.0
C3—C2—C7120.2 (3)H11A—N11—H11B107.8
C4—C3—C2121.5 (4)O15—V12—O14109.85 (10)
C4—C3—H3A119.2O15—V12—O13106.06 (11)
C2—C3—H3A119.2O14—V12—O1398.12 (10)
C3—C4—C5119.7 (4)O15—V12—N1198.71 (11)
C3—C4—H4A120.1O14—V12—N1189.77 (13)
C5—C4—H4A120.1O13—V12—N11149.49 (10)
C6—C5—C4120.1 (4)O15—V12—N8106.46 (9)
C6—C5—H5A119.9O14—V12—N8142.05 (11)
C4—C5—H5A119.9O13—V12—N881.94 (9)
C5—C6—C1121.2 (3)N11—V12—N874.05 (12)
C5—C6—H6A119.4C1—O13—V12122.65 (18)
C1—C6—H6A119.4C7—C26—H26A109.5
N8—C7—C2121.4 (3)C7—C26—H26B109.5
N8—C7—C26120.6 (3)H26A—C26—H26B109.5
C2—C7—C26118.0 (3)C7—C26—H26C109.5
C7—N8—C9119.5 (3)H26A—C26—H26C109.5
C7—N8—V12123.3 (2)H26B—C26—H26C109.5
C9—N8—V12116.56 (19)C10—C27—H27A109.5
N8—C9—C10109.6 (2)C10—C27—H27B109.5
N8—C9—H9A109.8H27A—C27—H27B109.5
C10—C9—H9A109.8C10—C27—H27C109.5
N8—C9—H9B109.8H27A—C27—H27C109.5
C10—C9—H9B109.8H27B—C27—H27C109.5
H9A—C9—H9B108.2C10—C28—H28A109.5
N11—C10—C9103.7 (3)C10—C28—H28B109.5
N11—C10—C28110.0 (2)H28A—C28—H28B109.5
C9—C10—C28111.5 (3)C10—C28—H28C109.5
N11—C10—C27108.4 (3)H28A—C28—H28C109.5
C9—C10—C27112.2 (3)H28B—C28—H28C109.5
C28—C10—C27110.7 (3)
O13—C1—C2—C3178.0 (3)N8—C9—C10—C2774.2 (3)
C6—C1—C2—C34.6 (4)C9—C10—N11—V1253.3 (3)
O13—C1—C2—C74.0 (4)C28—C10—N11—V12172.7 (2)
C6—C1—C2—C7173.4 (3)C27—C10—N11—V1266.2 (3)
C1—C2—C3—C41.5 (4)C10—N11—V12—O15139.7 (2)
C7—C2—C3—C4176.6 (3)C10—N11—V12—O14110.2 (3)
C2—C3—C4—C50.9 (5)C10—N11—V12—O134.5 (4)
C3—C4—C5—C60.0 (5)C10—N11—V12—N835.0 (2)
C4—C5—C6—C13.4 (6)C7—N8—V12—O1566.8 (3)
O13—C1—C6—C5176.9 (3)C9—N8—V12—O15103.9 (2)
C2—C1—C6—C55.6 (5)C7—N8—V12—O14130.5 (2)
C1—C2—C7—N820.0 (4)C9—N8—V12—O1458.7 (3)
C3—C2—C7—N8162.0 (3)C7—N8—V12—O1337.6 (2)
C1—C2—C7—C26159.8 (3)C9—N8—V12—O13151.6 (2)
C3—C2—C7—C2618.2 (4)C7—N8—V12—N11161.4 (3)
C2—C7—N8—C9179.5 (3)C9—N8—V12—N119.3 (2)
C26—C7—N8—C90.8 (4)C6—C1—O13—V12136.7 (2)
C2—C7—N8—V129.0 (4)C2—C1—O13—V1245.9 (4)
C26—C7—N8—V12171.2 (2)O15—V12—O13—C150.2 (2)
C7—N8—C9—C10172.0 (3)O14—V12—O13—C1163.6 (2)
V12—N8—C9—C1016.9 (3)N11—V12—O13—C192.8 (3)
N8—C9—C10—N1142.6 (3)N8—V12—O13—C154.7 (2)
N8—C9—C10—C28161.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O14i0.902.082.942 (4)159
N11—H11B···O15ii0.902.293.173 (4)168
C26—H26B···O14iii0.962.463.370 (4)158
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[V(C12H17N2O)O2]
Mr288.22
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)11.1198 (6), 15.7408 (8), 7.6448 (3)
V3)1338.10 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.2 × 0.04 × 0.04
Data collection
DiffractometerOxford Diffraction Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.941, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
11574, 2126, 1387
Rint0.071
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.051, 0.83
No. of reflections2126
No. of parameters167
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 849 Friedel pairs
Absolute structure parameter0.23 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O14i0.902.082.942 (4)159
N11—H11B···O15ii0.902.293.173 (4)168
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
 

Acknowledgements

This scientific work has been supported by Funds for Science in Years 2007–2009 as a research project (N N204 0355 33 and DS/8210–4–0086–9).

References

First citationCarter-Franklin, J. N., Parrish, J. D., Tchirret-Guth, R. A., Little, R. D. & Butler, A. (2003). J. Am. Chem. Soc. 125, 3688–3689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEady, R. R. (2003). Coord. Chem. Rev. 237, 23–30.  Web of Science CrossRef CAS Google Scholar
First citationEvangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249–265.  Web of Science CrossRef PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.  Web of Science CSD CrossRef CAS Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568.  Web of Science CSD CrossRef CAS Google Scholar
First citationMendz, G. L. (1991). Arch. Biochem. Biophys. 291, 201–211.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119–6121.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. Chem. 40, 494–497.  CrossRef CAS Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRehder, D., Antoni, G., Licini, G. M., Schulzke, C. & Meier, B. (2003). Coord. Chem. Rev. 237, 53–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationRehder, D., Costa Pessoa, J., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem. 7, 384–396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386–393.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds