organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­methyl­phen­yl)-2-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 4 March 2009; accepted 17 March 2009; online 25 March 2009)

In the title compound, C16H17NO, the N—H bond is in an anti conformation with respect to the C=O bonds. The aniline and benzoyl rings are almost coplanar, making a dihedral angle of 4.9 (3)°. The plane of the amide group makes an angle of 61.3 (3)° with the aniline ring and 58.3 (3)° with the benzoyl ring. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds into chains running along the b axis.

Related literature

For related structures, see Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.],c[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1494.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Orthorhombic, P b c a

  • a = 6.0062 (4) Å

  • b = 9.8036 (6) Å

  • c = 44.943 (4) Å

  • V = 2646.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.53 × 0.48 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.958, Tmax = 0.991

  • 20129 measured reflections

  • 2467 independent reflections

  • 1863 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.241

  • S = 1.14

  • 2467 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 (3) 1.99 (3) 2.880 (4) 170 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as part of our study of substituent effects on the structures of benzanilides (Gowda et al., 2003; 2008a, b, c), the structure of 2-methyl-N-(2,4-dimethylphenyl)benzamide has been determined. The N—H and C=O bonds in the amide segment are anti to each other (Fig. 1), similar to what is observed in 2-methyl-N-(phenyl)benzamide (Gowda et al., 2008a), 2-methyl-N-(4-methylphenyl)benzamide (Gowda et al., 2008c), 2-methyl-N-(2,6-dimethylphenyl)-benzamide (Gowda et al., 2008b) and other benzanilides. Further, the conformation of the amide oxygen is syn to the ortho-methyl group in the benzoyl ring and the amide hydrogen is syn to the ortho-methyl group in the aniline ring. The anilino and benzoyl rings are almost coplanar with a dihedral angle of 4.9 (3)°. The plane of the amide group makes the angles of 61.3 (3)° with the anilino ring and 58.3 (3)° with the benzoyl ring. A packing diagram of the title compound viewed in the bc-plane is shown in Fig. 2. Molecular chains running along the b-axis are generated by N—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see Gowda et al. (2003, 2008a,b,c).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

H atoms attached to C atoms were placed in calculated positions and refined within a riding model with C—H distances of 0.93 or 0.96 Å. The coordinates of the H atom of the amide group were refined with a restraint of 0.86 (2)Å for the H—N distance. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed in the bc-plane. Chains running along the b axis generated by N—H···O# hydrogen bonds are shown by dashed lines. [Symmetry code (#): -x + 1/2, y - 1/2,z]. H atoms not involved in hydrogen bonding have been omitted.
N-(2,4-Dimethylphenyl)-2-methylbenzamide top
Crystal data top
C16H17NOF(000) = 1024
Mr = 239.31Dx = 1.201 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7082 reflections
a = 6.0062 (4) Åθ = 3.2–27.5°
b = 9.8036 (6) ŵ = 0.08 mm1
c = 44.943 (4) ÅT = 295 K
V = 2646.4 (3) Å3Block, colourless
Z = 80.53 × 0.48 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2467 independent reflections
Graphite monochromator1863 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.073
ω scans with κ offsetsθmax = 25.7°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 77
Tmin = 0.958, Tmax = 0.991k = 1111
20129 measured reflectionsl = 5454
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0735P)2 + 4.7656P]
where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C16H17NOV = 2646.4 (3) Å3
Mr = 239.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.0062 (4) ŵ = 0.08 mm1
b = 9.8036 (6) ÅT = 295 K
c = 44.943 (4) Å0.53 × 0.48 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2467 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1863 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.991Rint = 0.073
20129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0981 restraint
wR(F2) = 0.241H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.24 e Å3
2467 reflectionsΔρmin = 0.21 e Å3
169 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4332 (7)0.5763 (4)0.09991 (8)0.0446 (9)
C20.3831 (7)0.5294 (4)0.07156 (9)0.0470 (9)
C30.5158 (7)0.5746 (4)0.04829 (9)0.0501 (10)
H30.48130.54630.02910.06*
C40.6975 (7)0.6600 (5)0.05232 (9)0.0557 (11)
C50.7436 (7)0.7029 (4)0.08089 (9)0.0543 (10)
H50.86350.7610.08430.065*
C60.6148 (7)0.6611 (4)0.10447 (9)0.0501 (10)
H60.64980.68980.12360.06*
C70.1870 (7)0.6237 (3)0.14167 (8)0.0442 (9)
C80.0506 (6)0.5613 (4)0.16578 (8)0.0442 (9)
C90.0815 (7)0.5979 (4)0.19532 (9)0.0533 (10)
C100.0551 (9)0.5371 (5)0.21657 (10)0.0712 (14)
H100.03560.55870.23660.085*
C110.2191 (9)0.4454 (5)0.20853 (12)0.0743 (14)
H110.3110.40810.22310.089*
C120.2471 (9)0.4092 (5)0.17960 (11)0.0711 (13)
H120.35680.34680.17430.085*
C130.1125 (7)0.4655 (4)0.15833 (10)0.0542 (10)
H130.12980.43960.13860.065*
C140.1901 (7)0.4363 (4)0.06628 (10)0.0589 (11)
H14A0.16790.42520.04530.088*
H14B0.05850.47490.0750.088*
H14C0.21990.34920.07520.088*
C150.8378 (9)0.7033 (5)0.02654 (11)0.0769 (15)
H15A0.99080.70820.03260.115*
H15B0.78990.79130.01970.115*
H15C0.8230.63810.01070.115*
C160.2558 (10)0.6978 (5)0.20471 (10)0.0754 (14)
H16A0.40040.66250.19990.113*
H16B0.24590.71240.22580.113*
H16C0.23310.78270.19450.113*
N10.3000 (6)0.5350 (3)0.12468 (7)0.0491 (9)
H1N0.287 (7)0.445 (3)0.1279 (8)0.059*
O10.1884 (5)0.7473 (3)0.13756 (6)0.0638 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.0306 (18)0.057 (2)0.0064 (17)0.0054 (18)0.0037 (16)
C20.043 (2)0.034 (2)0.064 (2)0.0031 (17)0.0023 (18)0.0020 (17)
C30.052 (2)0.042 (2)0.057 (2)0.001 (2)0.0008 (19)0.0006 (17)
C40.045 (2)0.058 (3)0.064 (2)0.001 (2)0.0058 (19)0.010 (2)
C50.043 (2)0.041 (2)0.079 (3)0.0051 (19)0.001 (2)0.002 (2)
C60.047 (2)0.042 (2)0.060 (2)0.0015 (18)0.0027 (19)0.0006 (18)
C70.048 (2)0.0267 (18)0.058 (2)0.0048 (17)0.0024 (18)0.0022 (15)
C80.045 (2)0.0311 (18)0.056 (2)0.0058 (17)0.0021 (18)0.0040 (16)
C90.055 (3)0.041 (2)0.063 (2)0.013 (2)0.003 (2)0.0011 (18)
C100.088 (4)0.070 (3)0.056 (2)0.025 (3)0.012 (3)0.002 (2)
C110.073 (3)0.059 (3)0.091 (4)0.006 (3)0.033 (3)0.012 (3)
C120.056 (3)0.061 (3)0.096 (4)0.004 (2)0.014 (3)0.004 (3)
C130.060 (3)0.032 (2)0.071 (3)0.001 (2)0.004 (2)0.0011 (18)
C140.053 (3)0.044 (2)0.080 (3)0.013 (2)0.004 (2)0.005 (2)
C150.069 (3)0.077 (3)0.085 (3)0.017 (3)0.015 (3)0.011 (3)
C160.082 (3)0.076 (3)0.068 (3)0.010 (3)0.021 (3)0.006 (2)
N10.064 (2)0.0178 (15)0.0659 (19)0.0033 (15)0.0112 (17)0.0033 (13)
O10.080 (2)0.0284 (14)0.083 (2)0.0061 (15)0.0167 (17)0.0030 (13)
Geometric parameters (Å, º) top
C1—C61.387 (5)C9—C161.494 (7)
C1—C21.388 (5)C10—C111.382 (7)
C1—N11.430 (5)C10—H100.93
C2—C31.388 (5)C11—C121.358 (7)
C2—C141.494 (5)C11—H110.93
C3—C41.387 (6)C12—C131.369 (6)
C3—H30.93C12—H120.93
C4—C51.380 (6)C13—H130.93
C4—C151.494 (6)C14—H14A0.96
C5—C61.375 (5)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—H60.93C15—H15A0.96
C7—O11.225 (4)C15—H15B0.96
C7—N11.342 (5)C15—H15C0.96
C7—C81.490 (5)C16—H16A0.96
C8—C91.388 (5)C16—H16B0.96
C8—C131.398 (5)C16—H16C0.96
C9—C101.393 (6)N1—H1N0.90 (3)
C6—C1—C2120.3 (4)C12—C11—C10120.6 (5)
C6—C1—N1119.7 (3)C12—C11—H11119.7
C2—C1—N1120.0 (4)C10—C11—H11119.7
C3—C2—C1117.5 (4)C11—C12—C13119.3 (5)
C3—C2—C14121.4 (4)C11—C12—H12120.3
C1—C2—C14121.1 (4)C13—C12—H12120.3
C4—C3—C2123.1 (4)C12—C13—C8121.2 (4)
C4—C3—H3118.4C12—C13—H13119.4
C2—C3—H3118.4C8—C13—H13119.4
C5—C4—C3117.6 (4)C2—C14—H14A109.5
C5—C4—C15121.5 (4)C2—C14—H14B109.5
C3—C4—C15120.9 (4)H14A—C14—H14B109.5
C6—C5—C4120.9 (4)C2—C14—H14C109.5
C6—C5—H5119.6H14A—C14—H14C109.5
C4—C5—H5119.6H14B—C14—H14C109.5
C5—C6—C1120.5 (4)C4—C15—H15A109.5
C5—C6—H6119.7C4—C15—H15B109.5
C1—C6—H6119.7H15A—C15—H15B109.5
O1—C7—N1123.5 (4)C4—C15—H15C109.5
O1—C7—C8121.3 (3)H15A—C15—H15C109.5
N1—C7—C8115.2 (3)H15B—C15—H15C109.5
C9—C8—C13119.8 (4)C9—C16—H16A109.5
C9—C8—C7121.0 (4)C9—C16—H16B109.5
C13—C8—C7119.2 (3)H16A—C16—H16B109.5
C8—C9—C10117.8 (4)C9—C16—H16C109.5
C8—C9—C16122.3 (4)H16A—C16—H16C109.5
C10—C9—C16120.0 (4)H16B—C16—H16C109.5
C11—C10—C9121.3 (4)C7—N1—C1122.8 (3)
C11—C10—H10119.4C7—N1—H1N120 (3)
C9—C10—H10119.4C1—N1—H1N117 (3)
C6—C1—C2—C32.3 (5)N1—C7—C8—C1357.5 (5)
N1—C1—C2—C3179.0 (3)C13—C8—C9—C100.4 (6)
C6—C1—C2—C14179.1 (4)C7—C8—C9—C10178.8 (4)
N1—C1—C2—C140.4 (5)C13—C8—C9—C16178.9 (4)
C1—C2—C3—C42.0 (6)C7—C8—C9—C161.9 (6)
C14—C2—C3—C4179.4 (4)C8—C9—C10—C111.3 (6)
C2—C3—C4—C51.2 (6)C16—C9—C10—C11179.4 (4)
C2—C3—C4—C15178.7 (4)C9—C10—C11—C121.8 (7)
C3—C4—C5—C60.7 (6)C10—C11—C12—C130.6 (7)
C15—C4—C5—C6179.2 (4)C11—C12—C13—C81.1 (7)
C4—C5—C6—C11.0 (6)C9—C8—C13—C121.6 (6)
C2—C1—C6—C51.9 (6)C7—C8—C13—C12177.6 (4)
N1—C1—C6—C5179.4 (3)O1—C7—N1—C10.2 (6)
O1—C7—C8—C958.6 (5)C8—C7—N1—C1177.8 (4)
N1—C7—C8—C9123.3 (4)C6—C1—N1—C762.0 (5)
O1—C7—C8—C13120.6 (4)C2—C1—N1—C7119.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.99 (3)2.880 (4)170 (4)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)6.0062 (4), 9.8036 (6), 44.943 (4)
V3)2646.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.48 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.958, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
20129, 2467, 1863
Rint0.073
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.241, 1.14
No. of reflections2467
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.99 (3)2.880 (4)170 (4)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support for the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds