supplementary materials


Acta Cryst. (2009). E65, i27    [ doi:10.1107/S1600536809007715 ]

Tetrasodium (dihydrogenheptaoxidodigermanato)bis(dihydrogentetraoxidogermanato)dicopper(II) monohydrate

Y.-F. Li, D.-P. Li, C.-L. Shi, Y.-S. Hu and L. Jin

Abstract top

In the hydro/solvothermally synthesized title compound, Na4[Cu2(H2Ge2O7)(H2GeO4)2]·H2O, the framework building units include CuO4, GeO2(OH)2 and GeO3(OH) tetrahedra, the latter being condensed into H2Ge2O74- dimers. All the tetrahedra are connected by corner-sharing into four-membered-ring (4MR) secondary building units containing two CuO4, one GeO2(OH)2 and one GeO3(OH) entity. The 4MRs form chains by corner-sharing the Cu unit and adjacent chains are linked by H2Ge2O74- dimers, generating layers containing ten-membered rings. Three sodium cations (one with site symmetry \overline{1} and one with site symmetry 2) and a water molecule (O-atom site symmetry 2) complete the structure. A network of O-H...O hydrogen bonds helps to consolidate the packing.

Comment top

Recently, gernamates have been recieving the extensive attentions owing to their potential applications such as ion-exchange, catalyst and sorption. The four-coordinated Ge has a trendency to form the double four ring geometry with oxygen, which can be observed in several Ge-based zeolites such as ASV, BEC, IWR, IWW, UOZ (O'Keeffe, et al., 1999). This derives from flexible Ge—O—Ge bond angles (130° or so). Incorporation of transition metals into Si-based materials is extremely interesting because transition metals can improve zeolite properties (Hartman, et al., 1999). Following the successful introduction of transition metals into zeolite materials, efforts are also made to incorporate transition metal elements, such as V (Whitfield, et al., 2003), Co (Julius, et al., 2003), Cu (Cascales, et al., 1999), Zn (Bu, et al., 2000) and Zr (Li, et al., 2000), into germanate frameworks. In this paper, a new copper(II) germanate with 10MR network, Na4[Cu2Ge4O9(OH)6].H2O (I), is described.

The asymmetric unit of (I) comprises two crystallographically independent GeO4–GeO2(OH)2 and GeO3(OH), one CuO4, three Na cations one of which locates on the center of ac plane, and a half of free water molecule (Fig.1). All of Ge and Cu atoms are tetrahedrally coordinated by oxygen atoms. Both GeO4 and CuO4 tetrahedra are lightly distorted with 1.721–1.794 Å of Ge—O and 1.952–1.964 Å of Cu—O. There is no linkage between Ge1 and Ge2, but Ge2 can really form the dimer of H2Ge2O74- by sharing O6 with 124.89° of Ge—O—Ge.

The 4MR SBU of (I) is consisted of two CuO4, one GeO2(OH)2 and one GeO3(OH). The GeO4 tetrahedra and CuO4 tetrahedra are connected by sharing corner. The bond angles of Ge—O—Cu range from 117.72° to 122.65°. The corner-sharing '4-rings' chain is constructed by the CuO4 of 4MR SBU as the corner. In such a chain, every CuO4 has four Cu—O—Ge linkages, while either GeO2(OH)2 or GeO3(OH) just have two Cu—O—Ge linkages. As the result of the existence of H2Ge2O74-, the adjacent corner-sharing '4-rings' chains are connected to the layer of 10MR net (Fig.2). Three crystallographically independent Na atoms, one of which loacates on the special position (1/2,0,1/2), act as the balanced cation and interact with the framework by Na—O electrostatic interactions with 2.372–2.569 Å of Na—O. Except for intramolecular hydrogen bond (O2—H2···O6i, O3—H3···O1ii, O5—H5···O4iii), there exists the intermolecar hydrogen bond between water molecules and terminal hydroxide anions (O1W—H1···O7).

Related literature top

For related structures, see: Bu et al. (2000); Cascales et al. (1999); Hartman & Kevan (1999); Julius et al. (2003); Li et al. (2000); O'Keeffe & Yaghi (1999); Whitfield et al. (2003).

Experimental top

GeO2(0.25 g), Cu(Ac)2.3H2O (0.28 g) and NaOH (0.38 g) were successively added into a pyridine/water (7.5 ml/1 ml) solution with molar ratio of 1 GeO2:0.5 Cu(Ac)2.3H2O:4 NaOH: 23 H2O: 38 pyridine. The deep blue mixture was vigoursly stirred for 6 hr. The final mixture was sealed into 23 ml autoclave and heated up to 438 K for 6 days. The autoclave was naturally cooled to room temperature, and the product was filtered, washed by distilled water and alcohol and dried at room temperature. Deep blue prismatic large single crystals of (I) were obtained. The atomic ratio of Ge: Cu: Na determined by EDX was 2:1:2, in agreement with the results of structural determination of (I).

Refinement top

The H atoms of –OH groups were placed in ideal positions and refined as riding atoms with O—H = 0.82 Å. The water H atom was located in a difference map and refined with restraints of O—H = 0.85 (1) Å and H···H = 1.37 (2) Å.

Computing details top

Data collection: EXPOSURE in IPDS Software (Stoe & Cie, 1997); cell refinement: CELL in IPDS Software (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of (I), showing displacement ellipsoids for the non-hydrogen atoms at the 50% probability level. [Symmetry codes: (i) 0.5 - x, -1/2 + y, z; (ii) 0.5 - x, 1/2 + y, z.]
[Figure 2] Fig. 2. The packing diagram of (I), viewed along [021] direction. CuO4 tetrahedra are shown in green, GeO4 tetrahedra in cyan, Na atoms in light gray and O atoms in red. H atoms are omitted for clarity.
Tetrasodium (dihydrogenheptaoxidodigermanato)bis(dihydrogentetraoxidogermanato)dicopper(II) monohydrate top
Crystal data top
Na4[Cu2(H2Ge2O7)(H2GeO4)2]·H2OF(000) = 1464
Mr = 773.56Dx = 3.472 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2000 reflections
a = 13.041 (3) Åθ = 2.8–26.0°
b = 8.7440 (17) ŵ = 11.05 mm1
c = 12.975 (3) ÅT = 293 K
V = 1479.6 (6) Å3Block, dark blue
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Stoe IPDS
diffractometer
1441 independent reflections
Radiation source: fine-focus sealed tube1038 reflections with I > 2σ(I)
graphiteRint = 0.099
Detector resolution: 6.0 pixels mm-1θmax = 26.0°, θmin = 2.8°
φ–oscillation, φ–incr.=1.8°, 100 exposure scansh = 1615
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 1010
Tmin = 0.152, Tmax = 0.582l = 1515
9596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
1441 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 2.11 e Å3
1 restraintΔρmin = 1.16 e Å3
Crystal data top
Na4[Cu2(H2Ge2O7)(H2GeO4)2]·H2OV = 1479.6 (6) Å3
Mr = 773.56Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 13.041 (3) ŵ = 11.05 mm1
b = 8.7440 (17) ÅT = 293 K
c = 12.975 (3) Å0.20 × 0.15 × 0.05 mm
Data collection top
Stoe IPDS
diffractometer
1441 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
1038 reflections with I > 2σ(I)
Tmin = 0.152, Tmax = 0.582Rint = 0.099
9596 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118Δρmax = 2.11 e Å3
S = 1.02Δρmin = 1.16 e Å3
1441 reflectionsAbsolute structure: ?
129 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.12245 (4)0.12598 (6)0.00099 (3)0.0080 (2)
Ge20.37958 (4)0.11778 (5)0.25132 (4)0.0076 (2)
Cu10.25095 (4)0.37556 (6)0.12703 (4)0.0059 (2)
Na10.50000.00000.50000.0192 (8)
Na20.50000.4894 (4)0.25000.0183 (8)
Na30.14907 (19)0.2426 (3)0.37481 (16)0.0160 (5)
O10.1236 (3)0.0089 (4)0.0976 (3)0.0112 (9)
O20.1320 (3)0.0301 (5)0.1209 (3)0.0133 (8)
H20.08510.05800.15850.070 (18)*
O30.0009 (3)0.2188 (5)0.0010 (3)0.0137 (9)
H30.03820.17360.03800.070 (18)*
O40.2169 (3)0.2639 (5)0.0013 (3)0.0108 (8)
O50.3686 (3)0.0205 (5)0.3725 (3)0.0140 (9)
H50.34020.07650.41440.070 (18)*
O60.50000.2115 (6)0.25000.0106 (11)
O70.1210 (3)0.4809 (4)0.1556 (3)0.0121 (8)
O80.2863 (3)0.2583 (4)0.2509 (3)0.0105 (7)
O1W0.00000.2609 (7)0.25000.0170 (12)
H10.023 (5)0.333 (6)0.212 (5)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0107 (4)0.0072 (4)0.0060 (3)0.00028 (19)0.0002 (2)0.00003 (17)
Ge20.0096 (3)0.0070 (3)0.0062 (3)0.00035 (18)0.0004 (2)0.0002 (2)
Cu10.0074 (4)0.0073 (4)0.0031 (4)0.0001 (2)0.0005 (2)0.0002 (2)
Na10.0245 (19)0.0161 (18)0.0170 (18)0.0027 (13)0.0063 (16)0.0008 (11)
Na20.0247 (18)0.0139 (17)0.0163 (17)0.0000.0081 (16)0.000
Na30.0181 (11)0.0138 (12)0.0160 (11)0.0008 (8)0.0016 (9)0.0011 (9)
O10.012 (2)0.0102 (18)0.0114 (19)0.0010 (13)0.0034 (16)0.0044 (14)
O20.015 (2)0.013 (2)0.0116 (18)0.0015 (15)0.0031 (18)0.0007 (15)
O30.0143 (19)0.013 (2)0.013 (2)0.0034 (15)0.001 (2)0.0005 (13)
O40.0148 (19)0.013 (2)0.0050 (15)0.0053 (16)0.0005 (15)0.0022 (14)
O50.017 (2)0.012 (2)0.0123 (19)0.0009 (15)0.000 (2)0.0003 (16)
O60.007 (2)0.011 (3)0.014 (2)0.0000.002 (2)0.000
O70.012 (2)0.0115 (19)0.0130 (19)0.0026 (14)0.0013 (16)0.0037 (15)
O80.0126 (18)0.0107 (18)0.0081 (15)0.0021 (14)0.0001 (15)0.0047 (16)
O1W0.023 (3)0.012 (3)0.016 (3)0.0000.006 (3)0.000
Geometric parameters (Å, °) top
Ge1—O11.721 (4)Na2—O1Wvi2.375 (8)
Ge1—O41.724 (4)Na2—O2v2.408 (4)
Ge1—O31.781 (4)Na2—O2vii2.408 (4)
Ge1—O21.795 (4)Na2—O62.429 (6)
Ge2—O7i1.724 (4)Na2—O1ii2.551 (4)
Ge2—O81.729 (3)Na2—O1vi2.551 (4)
Ge2—O61.772 (2)Na3—O2viii2.395 (5)
Ge2—O51.794 (4)Na3—O4v2.398 (4)
Cu1—O41.953 (4)Na3—O82.410 (4)
Cu1—O1ii1.960 (4)Na3—O5ii2.441 (5)
Cu1—O81.961 (4)Na3—O1W2.535 (2)
Cu1—O71.964 (4)Na3—O3ix2.543 (5)
Na1—O5iii2.388 (4)O2—H20.8200
Na1—O3iv2.459 (4)O3—H30.8200
Na1—O3v2.459 (4)O5—H50.8200
Na1—O7iv2.568 (4)O1W—H10.85 (4)
Na1—O7v2.568 (4)
O1—Ge1—O4118.13 (19)O1Wvi—Na2—Na3ii48.81 (5)
O1—Ge1—O3108.67 (19)O2v—Na2—Na3ii45.42 (11)
O4—Ge1—O3108.5 (2)O2vii—Na2—Na3ii142.64 (15)
O1—Ge1—O2108.73 (19)O6—Na2—Na3ii131.19 (5)
O4—Ge1—O2106.20 (17)O1ii—Na2—Na3ii90.23 (11)
O3—Ge1—O2105.96 (18)O1vi—Na2—Na3ii89.31 (11)
O7i—Ge2—O8119.18 (18)Na3vi—Na2—Na3ii97.61 (10)
O7i—Ge2—O6108.55 (17)O2viii—Na3—O4v91.63 (15)
O8—Ge2—O6107.15 (19)O2viii—Na3—O898.11 (15)
O7i—Ge2—O5107.56 (19)O4v—Na3—O885.22 (14)
O8—Ge2—O5106.51 (18)O2viii—Na3—O5ii169.22 (15)
O6—Ge2—O5107.36 (15)O4v—Na3—O5ii95.79 (16)
O7i—Ge2—Na3122.03 (14)O8—Na3—O5ii90.31 (14)
O6—Ge2—Na3127.45 (13)O2viii—Na3—O1W90.37 (19)
O5—Ge2—Na371.65 (14)O4v—Na3—O1W175.92 (17)
O4—Cu1—O1ii106.53 (14)O8—Na3—O1W98.03 (12)
O4—Cu1—O8118.46 (17)O5ii—Na3—O1W81.77 (18)
O1ii—Cu1—O8103.48 (14)O2viii—Na3—O3ix80.36 (15)
O4—Cu1—O7101.33 (15)O4v—Na3—O3ix97.19 (14)
O1ii—Cu1—O7120.99 (16)O8—Na3—O3ix177.16 (16)
O8—Cu1—O7107.05 (14)O5ii—Na3—O3ix90.94 (15)
O4—Cu1—O7101.33 (15)O1W—Na3—O3ix79.63 (12)
O1ii—Cu1—O7120.99 (16)O2viii—Na3—Na2xi45.72 (11)
O8—Cu1—O7107.05 (14)O4v—Na3—Na2xi137.34 (13)
O7—Cu1—O70.0 (2)O8—Na3—Na2xi98.36 (11)
O5iii—Na1—O3iv85.71 (13)O5ii—Na3—Na2xi126.51 (13)
O5iii—Na1—O3v94.29 (13)O1W—Na3—Na2xi44.81 (16)
O3iv—Na1—O3v180.0O3ix—Na3—Na2xi78.85 (11)
O5iii—Na1—O7iv95.68 (12)O2viii—Na3—Na1xii126.64 (12)
O3iv—Na1—O7iv85.86 (13)O4v—Na3—Na1xii96.07 (12)
O3v—Na1—O7iv94.14 (13)O8—Na3—Na1xii135.08 (12)
O5iii—Na1—O7v84.32 (12)O5ii—Na3—Na1xii44.80 (10)
O3iv—Na1—O7v94.14 (13)O1W—Na3—Na1xii79.88 (12)
O3v—Na1—O7v85.86 (13)O3ix—Na3—Na1xii46.31 (10)
O7iv—Na1—O7v180.0Na2xi—Na3—Na1xii109.67 (7)
O5iii—Na1—Na3i133.93 (11)O2viii—Na3—Ge277.56 (11)
O3iv—Na1—Na3i48.40 (10)O4v—Na3—Ge271.75 (11)
O3v—Na1—Na3i131.60 (10)O8—Na3—Ge225.09 (8)
O7iv—Na1—Na3i86.13 (9)O5ii—Na3—Ge2112.20 (12)
O7v—Na1—Na3i93.87 (9)O1W—Na3—Ge2112.18 (8)
O5iii—Na1—Na3x46.07 (11)O3ix—Na3—Ge2154.87 (13)
O3iv—Na1—Na3x131.60 (10)Na2xi—Na3—Ge293.97 (6)
O3v—Na1—Na3x48.40 (10)Na1xii—Na3—Ge2154.09 (7)
O7iv—Na1—Na3x93.87 (9)Ge1—O1—Cu1i120.2 (2)
O7v—Na1—Na3x86.13 (9)Ge1—O1—Na2xi124.3 (2)
Na3i—Na1—Na3x180.0Cu1i—O1—Na2xi111.90 (16)
O1Wvi—Na2—O2v94.04 (13)Ge1—O2—H2109.5
O1Wvi—Na2—O2vii94.04 (13)Ge1—O3—H3109.5
O2v—Na2—O2vii171.9 (3)Ge1—O4—Cu1120.93 (19)
O1Wvi—Na2—O6180.000 (1)Ge1—O4—Na3xiii120.2 (2)
O2v—Na2—O685.96 (12)Cu1—O4—Na3xiii114.70 (16)
O2vii—Na2—O685.96 (12)Ge2—O5—H5109.5
O1Wvi—Na2—O1ii89.65 (11)Ge2—O6—Ge2xiv124.9 (3)
O2v—Na2—O1ii95.04 (12)Ge2—O6—Na2117.56 (15)
O2vii—Na2—O1ii85.01 (12)Ge2xiv—O6—Na2117.56 (15)
O6—Na2—O1ii90.35 (12)Ge2ii—O7—Cu1117.7 (2)
O1Wvi—Na2—O1vi89.65 (12)Ge2ii—O7—Na1xiii121.2 (2)
O2v—Na2—O1vi85.01 (12)Cu1—O7—Na1xiii114.33 (16)
O2vii—Na2—O1vi95.04 (12)Ge2—O8—Cu1122.7 (2)
O6—Na2—O1vi90.35 (12)Ge2—O8—Na3118.67 (19)
O1ii—Na2—O1vi179.3 (2)Cu1—O8—Na3113.70 (15)
O1Wvi—Na2—Na3vi48.81 (5)Na2xi—O1W—Na3ix86.38 (15)
O2v—Na2—Na3vi142.64 (15)Na2xi—O1W—Na386.38 (15)
O2vii—Na2—Na3vi45.42 (11)Na3ix—O1W—Na3172.8 (3)
O6—Na2—Na3vi131.19 (5)Na2xi—O1W—H1138 (4)
O1ii—Na2—Na3vi89.31 (11)Na3ix—O1W—H187 (5)
O1vi—Na2—Na3vi90.23 (11)Na3—O1W—H198 (5)
O7i—Ge2—Na3—O2viii47.40 (19)O8—Ge2—O6—Na20.66 (13)
O8—Ge2—Na3—O2viii144.2 (2)O5—Ge2—O6—Na2113.42 (14)
O6—Ge2—Na3—O2viii150.40 (15)Na3—Ge2—O6—Na233.55 (8)
O5—Ge2—Na3—O2viii52.23 (17)O2v—Na2—O6—Ge243.59 (9)
O7i—Ge2—Na3—O4v143.33 (18)O2vii—Na2—O6—Ge2136.41 (9)
O8—Ge2—Na3—O4v119.8 (2)O1ii—Na2—O6—Ge251.44 (9)
O6—Ge2—Na3—O4v54.47 (16)O1vi—Na2—O6—Ge2128.56 (9)
O5—Ge2—Na3—O4v43.70 (17)Na3vi—Na2—O6—Ge2140.83 (6)
O7i—Ge2—Na3—O896.8 (3)Na3ii—Na2—O6—Ge239.17 (6)
O6—Ge2—Na3—O865.4 (2)O2v—Na2—O6—Ge2xiv136.41 (9)
O5—Ge2—Na3—O8163.5 (3)O2vii—Na2—O6—Ge2xiv43.59 (9)
O7i—Ge2—Na3—O5ii127.81 (18)O1ii—Na2—O6—Ge2xiv128.56 (9)
O8—Ge2—Na3—O5ii31.0 (2)O1vi—Na2—O6—Ge2xiv51.44 (9)
O6—Ge2—Na3—O5ii34.39 (18)Na3vi—Na2—O6—Ge2xiv39.17 (6)
O5—Ge2—Na3—O5ii132.6 (2)Na3ii—Na2—O6—Ge2xiv140.83 (6)
O7i—Ge2—Na3—O1W37.9 (2)O4—Cu1—O7—O70.00 (9)
O8—Ge2—Na3—O1W59.0 (3)O1ii—Cu1—O7—O70.00 (16)
O6—Ge2—Na3—O1W124.35 (18)O8—Cu1—O7—O70.00 (11)
O5—Ge2—Na3—O1W137.5 (2)O4—Cu1—O7—Ge2ii170.6 (2)
O7i—Ge2—Na3—O3ix76.5 (3)O1ii—Cu1—O7—Ge2ii53.3 (3)
O8—Ge2—Na3—O3ix173.3 (4)O8—Cu1—O7—Ge2ii64.6 (2)
O6—Ge2—Na3—O3ix121.3 (3)O7—Cu1—O7—Ge2ii0(49)
O5—Ge2—Na3—O3ix23.2 (3)O4—Cu1—O7—Na1xiii18.9 (2)
O7i—Ge2—Na3—Na2xi4.45 (16)O1ii—Cu1—O7—Na1xiii98.39 (19)
O8—Ge2—Na3—Na2xi101.3 (2)O8—Cu1—O7—Na1xiii143.67 (16)
O6—Ge2—Na3—Na2xi166.65 (12)O7—Cu1—O7—Na1xiii0(22)
O5—Ge2—Na3—Na2xi95.19 (15)O7i—Ge2—O8—Cu148.1 (3)
O7i—Ge2—Na3—Na1xii151.8 (2)O6—Ge2—O8—Cu175.6 (2)
O8—Ge2—Na3—Na1xii54.9 (2)O5—Ge2—O8—Cu1169.8 (2)
O6—Ge2—Na3—Na1xii10.4 (2)Na3—Ge2—O8—Cu1153.5 (4)
O5—Ge2—Na3—Na1xii108.6 (2)O7i—Ge2—O8—Na3105.4 (2)
O4—Ge1—O1—Cu1i51.6 (3)O6—Ge2—O8—Na3130.96 (16)
O3—Ge1—O1—Cu1i175.7 (2)O5—Ge2—O8—Na316.3 (3)
O2—Ge1—O1—Cu1i69.4 (3)O4—Cu1—O8—Ge252.6 (3)
O4—Ge1—O1—Na2xi105.0 (3)O1ii—Cu1—O8—Ge265.0 (3)
O3—Ge1—O1—Na2xi19.1 (3)O7—Cu1—O8—Ge2166.1 (2)
O2—Ge1—O1—Na2xi134.0 (2)O7—Cu1—O8—Ge2166.1 (2)
O1—Ge1—O4—Cu147.6 (3)O4—Cu1—O8—Na3102.1 (2)
O3—Ge1—O4—Cu176.6 (3)O1ii—Cu1—O8—Na3140.33 (17)
O2—Ge1—O4—Cu1169.9 (2)O7—Cu1—O8—Na311.5 (2)
O1—Ge1—O4—Na3xiii108.2 (2)O7—Cu1—O8—Na311.5 (2)
O3—Ge1—O4—Na3xiii127.6 (2)O2viii—Na3—O8—Ge235.2 (2)
O2—Ge1—O4—Na3xiii14.1 (3)O4v—Na3—O8—Ge255.8 (2)
O1ii—Cu1—O4—Ge1170.2 (2)O5ii—Na3—O8—Ge2151.5 (2)
O8—Cu1—O4—Ge154.2 (3)O1W—Na3—O8—Ge2126.7 (2)
O7—Cu1—O4—Ge162.5 (3)Na2xi—Na3—O8—Ge281.4 (2)
O7—Cu1—O4—Ge162.5 (3)Na1xii—Na3—O8—Ge2149.58 (14)
O1ii—Cu1—O4—Na3xiii13.1 (2)O2viii—Na3—O8—Cu1120.56 (19)
O8—Cu1—O4—Na3xiii102.9 (2)O4v—Na3—O8—Cu1148.5 (2)
O7—Cu1—O4—Na3xiii140.47 (18)O5ii—Na3—O8—Cu152.70 (19)
O7—Cu1—O4—Na3xiii140.47 (18)O1W—Na3—O8—Cu129.0 (2)
O7i—Ge2—O6—Ge2xiv49.42 (14)Na2xi—Na3—O8—Cu174.33 (17)
O8—Ge2—O6—Ge2xiv179.34 (13)Na1xii—Na3—O8—Cu154.7 (3)
O5—Ge2—O6—Ge2xiv66.58 (14)Ge2—Na3—O8—Cu1155.8 (3)
Na3—Ge2—O6—Ge2xiv146.45 (8)O2viii—Na3—O1W—Na2xi4.43 (10)
O7i—Ge2—O6—Na2130.58 (14)
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1/2, y+1/2, z; (iii) −x+1, −y, −z+1; (iv) x+1/2, y−1/2, −z+1/2; (v) −x+1/2, −y+1/2, z+1/2; (vi) x+1/2, y+1/2, −z+1/2; (vii) x+1/2, −y+1/2, −z; (viii) x, −y, z+1/2; (ix) −x, y, −z+1/2; (x) x+1/2, −y+1/2, −z+1; (xi) x−1/2, y−1/2, −z+1/2; (xii) x−1/2, −y+1/2, −z+1; (xiii) −x+1/2, −y+1/2, z−1/2; (xiv) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6xiii0.822.593.298 (5)146
O3—H3···O1xv0.821.982.765 (6)161
O5—H5···O4v0.821.942.755 (6)171
O1W—H1···O70.85 (4)1.96 (5)2.773 (6)159 (6)
Symmetry codes: (xiii) −x+1/2, −y+1/2, z−1/2; (xv) −x, −y, −z; (v) −x+1/2, −y+1/2, z+1/2.
Table 1
Selected geometric parameters (Å)
top
Ge1—O11.721 (4)Ge2—O61.772 (2)
Ge1—O41.724 (4)Ge2—O51.794 (4)
Ge1—O31.781 (4)Cu1—O41.953 (4)
Ge1—O21.795 (4)Cu1—O1ii1.960 (4)
Ge2—O7i1.724 (4)Cu1—O81.961 (4)
Ge2—O81.729 (3)Cu1—O71.964 (4)
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1/2, y+1/2, z.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6iii0.822.593.298 (5)146
O3—H3···O1iv0.821.982.765 (6)161
O5—H5···O4v0.821.942.755 (6)171
O1W—H1···O70.85 (4)1.96 (5)2.773 (6)159 (6)
Symmetry codes: (iii) −x+1/2, −y+1/2, z−1/2; (iv) −x, −y, −z; (v) −x+1/2, −y+1/2, z+1/2.
Acknowledgements top

The project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20071108).

references
References top

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bu, X., Feng, P. & Stucky, G. D. (2000). Chem. Mater. 12, 1811–1913.

Cascales, C., Gutierrez-Puebla, E., Monge, M. A. & Ruiz-Valero, C. (1999). Angew. Chem. Int. Ed. 16, 2436–2439.

Hartman, M. & Kevan, L. (1999). Chem. Rev. 99, 635–664.

Julius, N. N., Choudhury, A. & Rao, C. N. R. (2003). J. Solid State Chem. 170, 124–129.

Li, H., Eddaoudi, M., Plevert, J., O'Keeffe, M. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 12409–12410.

O'Keeffe, M. & Yaghi, O. M. (1999). Chem. Eur. J. 5, 2796–2801.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (1997). IPDS Software andX-RED. Stoe & Cie GmbH, Darmstadt, Germany.

Whitfield, T., Wang, X. & Jacobson, A. J. (2003). Inorg. Chem. 42, 3728–3733.