organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Bromo-5-chloro-2-hy­droxy­benzyl­­idene)-2-meth­oxy­benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: houjinlong09@163.com

(Received 10 March 2009; accepted 19 March 2009; online 25 March 2009)

The title compound, C15H12BrClN2O3, was obtained by the condensation reaction between 3-bromo-5-chloro-2-hydroxy­benzaldehyde and 2-methoxy­benzohydrazide. The mol­ecule is essentially planar, with a dihedral angle between the two benzene rings of 4.7 (2)°, and displays an E configuration about the C=N double bond. The mol­ecular conformation is stabilized by intramolecular O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, mol­ecules are linked into zigzag chains running parallel to the c axis by inter­molecular C—H⋯O hydrogen bonds. The chains are further connected through aromatic ππ stacking inter­actions with centroid–centroid distances of 3.583 (4) Å.

Related literature

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). For the crystal structures of related hydrazone compounds, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrClN2O3

  • Mr = 383.63

  • Monoclinic, C c

  • a = 10.883 (1) Å

  • b = 12.863 (2) Å

  • c = 10.950 (1) Å

  • β = 96.027 (3)°

  • V = 1524.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 298 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.746

  • 4397 measured reflections

  • 2323 independent reflections

  • 1906 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.062

  • S = 1.02

  • 2323 reflections

  • 205 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 671 Friedel pairs

  • Flack parameter: 0.068 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.549 (4) 146
N2—H2⋯O3 0.895 (10) 1.92 (3) 2.623 (4) 134 (4)
C6—H6⋯O2i 0.93 2.45 3.315 (6) 154
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Karthikeyan et al., 2006; Kucukguzel et al., 2006). In the last two years, several hydrazone compounds have been structurally characterized (Mohd Lair et al., 2009; Fun et al., 2008; Zhang et al., 2009; Khaledi et al., 2008). In this paper, the synthesis and crystal structure of the title compound, derived from the condensation reaction of 3-bromo-5-chloro-2-hydroxybenzaldehyde and 2-methoxybenzohydrazide, is reported.

The molecular structure of the title compound is shown in Fig. 1. The molecule is essentially planar (mean deviation 0.010 (4) Å) and displays an E configuration about the CN double bond. All bond lengths are within normal ranges (Allen et al., 1987). The molecular conformation is stabilized by intramolecular O—H···N and N—H···O hydrogen bonds (Table 1). In the crystal structure, the molecules are linked into zig-zag chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds. The chains are further connected by aromatic π-π stacking interactions: Cp1···Cp2i = 3.583 (4) Å, perpendicular interplanar distance = 3.430 (4) Å, Cp1···Cp2i offset = 1.037 (3) Å [Cp1 and Cp2 are the centroids of the C9–C14 and C1–C6 armatic rings, respectively. Symmetry code: (i) -1/2+x, -1/2+y, z].

Related literature top

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For the crystal structures of related hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

3-Bromo-5-chloro-2-hydroxybenzaldehyde (1.0 mmol, 235.5 mg) and 2-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with the Uiso(H) value fixed at 0.08 Å2. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms.
N'-(3-Bromo-5-chloro-2-hydroxybenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H12BrClN2O3F(000) = 768
Mr = 383.63Dx = 1.672 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1920 reflections
a = 10.883 (1) Åθ = 2.4–25.0°
b = 12.863 (2) ŵ = 2.89 mm1
c = 10.950 (1) ÅT = 298 K
β = 96.027 (3)°Block, yellow
V = 1524.4 (3) Å30.12 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2323 independent reflections
Radiation source: fine-focus sealed tube1906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.709, Tmax = 0.746k = 1616
4397 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0041P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2323 reflectionsΔρmax = 0.32 e Å3
205 parametersΔρmin = 0.28 e Å3
3 restraintsAbsolute structure: Flack (1983), 671 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.068 (12)
Crystal data top
C15H12BrClN2O3V = 1524.4 (3) Å3
Mr = 383.63Z = 4
Monoclinic, CcMo Kα radiation
a = 10.883 (1) ŵ = 2.89 mm1
b = 12.863 (2) ÅT = 298 K
c = 10.950 (1) Å0.12 × 0.12 × 0.10 mm
β = 96.027 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2323 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1906 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.746Rint = 0.028
4397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.32 e Å3
S = 1.02Δρmin = 0.28 e Å3
2323 reflectionsAbsolute structure: Flack (1983), 671 Friedel pairs
205 parametersAbsolute structure parameter: 0.068 (12)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87674 (5)1.27290 (3)0.55418 (4)0.05914 (15)
Cl10.79439 (11)1.45929 (8)0.10011 (11)0.0630 (3)
O30.5131 (3)0.7894 (2)0.0042 (3)0.0538 (9)
O20.6516 (3)0.8295 (2)0.3590 (3)0.0546 (9)
C80.6188 (3)0.8209 (3)0.2494 (4)0.0396 (9)
N20.6245 (3)0.9033 (2)0.1728 (3)0.0418 (8)
N10.6674 (3)0.9949 (2)0.2236 (3)0.0392 (7)
O10.7599 (3)1.09258 (19)0.4140 (2)0.0444 (6)
H10.73321.04210.37380.067*
C70.6737 (3)1.0742 (3)0.1564 (4)0.0415 (9)
H70.64771.07130.07280.050*
C20.7652 (3)1.1748 (3)0.3396 (3)0.0344 (8)
C60.7306 (4)1.2597 (3)0.1403 (5)0.0390 (11)
H60.70251.25770.05710.047*
C90.5699 (4)0.7207 (3)0.1948 (4)0.0383 (9)
C10.7228 (3)1.1710 (3)0.2134 (3)0.0370 (9)
C50.7799 (3)1.3492 (3)0.1920 (4)0.0447 (10)
C30.8145 (3)1.2676 (3)0.3864 (4)0.0420 (9)
C40.8216 (4)1.3547 (3)0.3147 (4)0.0444 (10)
H40.85411.41630.34870.053*
C100.5176 (3)0.7058 (3)0.0733 (4)0.0433 (10)
C110.4706 (4)0.6082 (3)0.0378 (4)0.0528 (11)
H110.43300.59870.04170.063*
C150.4532 (5)0.7794 (4)0.1255 (4)0.0696 (15)
H15A0.36780.76240.12190.104*
H15B0.49220.72520.16780.104*
H15C0.45930.84380.16870.104*
C140.5754 (4)0.6344 (4)0.2755 (4)0.0486 (12)
H140.60940.64220.35650.058*
C130.5317 (4)0.5407 (4)0.2359 (5)0.0645 (13)
H130.53740.48450.28960.077*
C120.4787 (4)0.5271 (4)0.1169 (5)0.0661 (13)
H120.44850.46220.09110.079*
H20.597 (4)0.897 (4)0.0932 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0772 (3)0.0527 (2)0.0443 (2)0.0058 (3)0.00881 (19)0.0139 (3)
Cl10.0775 (8)0.0393 (6)0.0743 (8)0.0053 (5)0.0180 (6)0.0199 (6)
O30.066 (2)0.059 (2)0.0339 (18)0.0160 (16)0.0040 (16)0.0048 (16)
O20.080 (2)0.049 (2)0.0320 (18)0.0123 (16)0.0084 (16)0.0009 (14)
C80.041 (2)0.038 (2)0.040 (2)0.0012 (17)0.0042 (18)0.0006 (19)
N20.058 (2)0.0367 (19)0.0294 (17)0.0104 (15)0.0027 (15)0.0052 (15)
N10.0491 (18)0.0338 (18)0.0338 (17)0.0084 (14)0.0003 (14)0.0040 (14)
O10.0669 (17)0.0337 (16)0.0304 (14)0.0053 (13)0.0056 (13)0.0023 (12)
C70.049 (2)0.044 (2)0.031 (2)0.0010 (18)0.0001 (17)0.0006 (18)
C20.041 (2)0.028 (2)0.034 (2)0.0049 (15)0.0012 (17)0.0020 (16)
C60.042 (2)0.037 (3)0.038 (3)0.0041 (18)0.0027 (19)0.0063 (18)
C90.040 (2)0.036 (2)0.041 (2)0.0012 (16)0.0115 (18)0.0041 (18)
C10.0378 (19)0.037 (2)0.036 (2)0.0046 (17)0.0020 (17)0.0033 (17)
C50.045 (2)0.031 (2)0.059 (3)0.0068 (18)0.013 (2)0.006 (2)
C30.045 (2)0.045 (2)0.035 (2)0.0050 (18)0.0012 (18)0.0095 (19)
C40.050 (2)0.029 (2)0.055 (3)0.0033 (16)0.008 (2)0.0042 (18)
C100.038 (2)0.050 (3)0.043 (2)0.0062 (17)0.0095 (18)0.0154 (19)
C110.053 (3)0.052 (3)0.055 (3)0.015 (2)0.012 (2)0.018 (2)
C150.073 (3)0.089 (4)0.044 (3)0.023 (3)0.005 (2)0.011 (3)
C140.045 (2)0.052 (3)0.049 (3)0.006 (2)0.008 (2)0.010 (2)
C130.071 (3)0.043 (3)0.083 (4)0.004 (2)0.025 (3)0.012 (3)
C120.067 (3)0.044 (3)0.090 (4)0.014 (2)0.020 (3)0.018 (3)
Geometric parameters (Å, º) top
Br1—C31.891 (4)C6—H60.9300
Cl1—C51.754 (4)C9—C101.404 (6)
O3—C101.367 (5)C9—C141.417 (6)
O3—C151.423 (5)C5—C41.374 (6)
O2—C81.221 (4)C3—C41.375 (6)
C8—N21.357 (5)C4—H40.9300
C8—C91.494 (5)C10—C111.396 (5)
N2—N11.364 (4)C11—C121.353 (7)
N2—H20.895 (10)C11—H110.9300
N1—C71.265 (4)C15—H15A0.9600
O1—C21.341 (4)C15—H15B0.9600
O1—H10.8200C15—H15C0.9600
C7—C11.468 (5)C14—C131.350 (6)
C7—H70.9300C14—H140.9300
C2—C31.384 (5)C13—C121.379 (7)
C2—C11.411 (5)C13—H130.9300
C6—C51.367 (6)C12—H120.9300
C6—C11.402 (6)
C10—O3—C15119.4 (4)C4—C3—C2122.2 (4)
O2—C8—N2120.6 (4)C4—C3—Br1119.3 (3)
O2—C8—C9121.8 (4)C2—C3—Br1118.5 (3)
N2—C8—C9117.6 (4)C5—C4—C3118.9 (4)
C8—N2—N1117.3 (3)C5—C4—H4120.5
C8—N2—H2120 (3)C3—C4—H4120.5
N1—N2—H2123 (3)O3—C10—C11123.1 (4)
C7—N1—N2119.8 (3)O3—C10—C9117.7 (3)
C2—O1—H1109.5C11—C10—C9119.1 (4)
N1—C7—C1118.4 (3)C12—C11—C10121.2 (4)
N1—C7—H7120.8C12—C11—H11119.4
C1—C7—H7120.8C10—C11—H11119.4
O1—C2—C3119.6 (3)O3—C15—H15A109.5
O1—C2—C1122.5 (3)O3—C15—H15B109.5
C3—C2—C1117.9 (3)H15A—C15—H15B109.5
C5—C6—C1119.6 (4)O3—C15—H15C109.5
C5—C6—H6120.2H15A—C15—H15C109.5
C1—C6—H6120.2H15B—C15—H15C109.5
C10—C9—C14118.1 (4)C13—C14—C9120.6 (4)
C10—C9—C8126.1 (4)C13—C14—H14119.7
C14—C9—C8115.9 (4)C9—C14—H14119.7
C6—C1—C2119.8 (4)C14—C13—C12121.0 (5)
C6—C1—C7119.3 (4)C14—C13—H13119.5
C2—C1—C7120.9 (3)C12—C13—H13119.5
C6—C5—C4121.5 (4)C11—C12—C13119.9 (4)
C6—C5—Cl1119.8 (4)C11—C12—H12120.0
C4—C5—Cl1118.6 (3)C13—C12—H12120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.549 (4)146
N2—H2···O30.90 (1)1.92 (3)2.623 (4)134 (4)
C6—H6···O2i0.932.453.315 (6)154
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12BrClN2O3
Mr383.63
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)10.883 (1), 12.863 (2), 10.950 (1)
β (°) 96.027 (3)
V3)1524.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
4397, 2323, 1906
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.062, 1.02
No. of reflections2323
No. of parameters205
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28
Absolute structureFlack (1983), 671 Friedel pairs
Absolute structure parameter0.068 (12)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.549 (4)146.1
N2—H2···O30.895 (10)1.92 (3)2.623 (4)134 (4)
C6—H6···O2i0.932.453.315 (6)154
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

Financially support from Qiqihar University is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds