organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2-Phenyl-2H-1,2,3-triazol-4-yl)methyl­ene­amino]ethanol

aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256600, People's Republic of China, and bDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China
*Correspondence e-mail: yanqiudang@163.com

(Received 2 March 2009; accepted 4 March 2009; online 11 March 2009)

In the title Schiff base compound, C11H12N4O, the mol­ecule adopts a trans configuration about the central C=N bond. The dihedral angle between the phenyl ring and the triazole ring is 14.3 (3)°. In the crystal structure, mol­ecules are linked into a one-dimensional supra­molecular chain by inter­molecular O—H⋯N hydrogen bonding between the hydroxyl group and the imino N atom.

Related literature

For related literature on Schiff bases, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Borisova et al. (2007[Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46-79.]); Maheswari et al. (2006[Maheswari, P. U., Roy, S., Dulk, H., Barends, S., Wezel, G., Kozlevcar, B., Gamez, P. & Reedijk, J. (2006). J. Am. Chem. Soc. 128, 710-711.]). For the crystal structures of similar Schiff bases, see: Nate et al. (1987[Nate, H., Sekine, Y., Oda, K., Aoe, K., Nakai, H., Wada, H., Takeda, M., Yabana, H. & Nagao, T. (1987). Chem. Pharm. Bull. 35, 3253-3260.]); Yogavel et al. (2003[Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83-o85.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N4O

  • Mr = 216.25

  • Orthorhombic, P c a 21

  • a = 13.124 (5) Å

  • b = 12.770 (5) Å

  • c = 6.658 (3) Å

  • V = 1115.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.12 × 0.07 × 0.03 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.993

  • 5534 measured reflections

  • 1196 independent reflections

  • 596 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.135

  • S = 1.01

  • 1196 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 2.02 2.835 (6) 173
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases play an important role in coordination chemistry and have demonstrated significant biological activity (Ali et al., 2002; Borisova et al., 2007; Maheswari et al., 2006). The title compound, derived from 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde and 2-aminoethanol, is a potential N3O tetradentate Schiff base ligand. Its crystal structure is described here.

The title molecule (Fig. 1) adopts a trans configuration about the central CN bond. The dihedral angle between the phenyl ring and the triazole ring is 14.3 (3)°. Atoms C9 and N4 are nearly coplanar with the triazole ring; the maximum deviation from the mean plane through these seven atoms is 0.066 (7) Å for C9. The torsion angles C8—C7—C9—N4 and N3—C7—C9—N4 are 8.4 (11) and -173.2 (6)°, respectively. The bond lengths (Allen et al., 1987) and angles of the molecule are within normal ranges. The N4C9 [1.255 (5) Å] and N4—C10 [1.461 (5) Å] bond distances are comparable to those found in similar Schiff base compounds, such as 2-(2-(2-(4-phenylpiperazinyl)ethoxy)benzylideneamino)ethanol (Nate et al., 1987) and 1,4-bis(2-hydroxy-3-(N-(2-hydroxyethyl)imino)-5-methylbenzyl)piperazine (Yogavel et al., 2003). In the crystal structure, O1—H1···N4 intermolecular hydrogen bonds (Table 1 and Fig. 2), formed between the hydroxyl group and the imino N, link the molecules into a one-dimension supramolecular chain.

Related literature top

For related literature on Schiff bases, see: Ali et al. (2002); Borisova et al. (2007); Maheswari et al. (2006). For the crystal structures of similar Schiff bases, see: Nate et al. (1987); Yogavel et al. (2003). For standard bond-length data, see: Allen et al. (1987).

Experimental top

2-Phenyl-2H-1,2,3-triazole-4-carbaldehyde (0.17 g, 1 mmol) and 2-aminoethanol (0.06 g, 1 mmol) were refluxed for 30 min in a methanol solution (15 ml). The reaction mixture was cooled to room temprature and filtered. After allowing the filtrate to stand in air for 3 d, pale yellow plate crystals (yield 76%; mp 346–347 K) were obtained.

Refinement top

H atoms were placed at calculated positions and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(C) for the hydroxyl H atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. The intermolecular hydrogen bonds are shown as dashed lines.
2-[(E)-(2-Phenyl-2H-1,2,3-triazol-4-yl)methyleneamino]ethanol top
Crystal data top
C11H12N4OF(000) = 456
Mr = 216.25Dx = 1.287 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 320 reflections
a = 13.124 (5) Åθ = 2.2–18.5°
b = 12.770 (5) ŵ = 0.09 mm1
c = 6.658 (3) ÅT = 295 K
V = 1115.8 (8) Å3Plate, pale yellow
Z = 40.12 × 0.07 × 0.03 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
1196 independent reflections
Radiation source: fine-focus sealed tube596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1616
Tmin = 0.989, Tmax = 0.993k = 1315
5534 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
1196 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C11H12N4OV = 1115.8 (8) Å3
Mr = 216.25Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.124 (5) ŵ = 0.09 mm1
b = 12.770 (5) ÅT = 295 K
c = 6.658 (3) Å0.12 × 0.07 × 0.03 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
1196 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
596 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.084
5534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.135H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
1196 reflectionsΔρmin = 0.14 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0897 (3)0.2763 (3)0.8805 (10)0.0761 (13)
N20.1661 (3)0.3447 (3)0.8868 (7)0.0596 (11)
N30.2589 (3)0.3020 (3)0.8840 (7)0.0578 (10)
N40.3009 (3)0.0258 (3)0.8507 (8)0.0687 (13)
O10.3829 (3)0.0715 (3)1.2273 (8)0.0842 (13)
H10.33110.03911.25700.126*
C10.1492 (4)0.4541 (4)0.8940 (10)0.0680 (14)
C20.0539 (5)0.4918 (4)0.9368 (10)0.084 (2)
H20.00060.44560.96190.101*
C30.0372 (6)0.5982 (5)0.9427 (11)0.103 (3)
H30.02740.62410.97180.123*
C40.1147 (7)0.6647 (5)0.9060 (11)0.113 (3)
H40.10350.73650.91390.136*
C50.2086 (6)0.6287 (4)0.8579 (11)0.107 (2)
H50.26050.67580.82740.128*
C60.2278 (5)0.5209 (4)0.8539 (9)0.0877 (19)
H60.29250.49540.82470.105*
C70.2401 (3)0.2000 (3)0.8766 (9)0.0602 (13)
C80.1364 (3)0.1845 (4)0.8733 (11)0.0720 (15)
H80.10410.11970.86690.086*
C90.3212 (4)0.1209 (4)0.8771 (10)0.0673 (14)
H90.38840.14140.89720.081*
C100.3852 (3)0.0487 (4)0.8635 (14)0.0854 (19)
H10A0.44890.01120.87910.103*
H10B0.38880.08940.74080.103*
C110.3691 (4)0.1209 (4)1.0410 (13)0.077 (2)
H11A0.30060.14911.03490.093*
H11B0.41630.17911.03080.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (2)0.051 (2)0.111 (4)0.004 (2)0.003 (4)0.007 (4)
N20.076 (3)0.046 (2)0.057 (3)0.001 (2)0.002 (3)0.005 (3)
N30.071 (2)0.052 (2)0.051 (3)0.0108 (19)0.002 (3)0.001 (3)
N40.063 (2)0.054 (2)0.089 (4)0.005 (2)0.012 (3)0.009 (3)
O10.070 (3)0.066 (3)0.117 (4)0.0067 (19)0.014 (2)0.001 (3)
C10.100 (4)0.052 (3)0.053 (4)0.004 (3)0.008 (4)0.006 (4)
C20.105 (4)0.062 (4)0.086 (6)0.009 (3)0.001 (4)0.005 (3)
C30.156 (7)0.061 (4)0.092 (6)0.023 (4)0.005 (5)0.002 (4)
C40.207 (9)0.055 (4)0.077 (6)0.013 (5)0.013 (7)0.010 (4)
C50.181 (8)0.057 (4)0.083 (6)0.028 (4)0.043 (6)0.011 (4)
C60.132 (5)0.056 (3)0.075 (5)0.023 (3)0.020 (5)0.004 (4)
C70.064 (3)0.050 (3)0.066 (4)0.008 (2)0.001 (4)0.013 (3)
C80.068 (3)0.047 (3)0.101 (5)0.000 (2)0.012 (5)0.012 (4)
C90.063 (3)0.066 (3)0.073 (4)0.007 (2)0.004 (4)0.014 (5)
C100.069 (3)0.064 (3)0.124 (6)0.018 (3)0.017 (5)0.011 (5)
C110.055 (3)0.045 (3)0.132 (7)0.012 (3)0.010 (4)0.007 (5)
Geometric parameters (Å, º) top
N1—C81.324 (5)C4—C51.354 (8)
N1—N21.330 (5)C4—H40.9300
N2—N31.336 (5)C5—C61.400 (7)
N2—C11.415 (6)C5—H50.9300
N3—C71.327 (5)C6—H60.9300
N4—C91.255 (5)C7—C81.376 (6)
N4—C101.461 (5)C7—C91.468 (6)
O1—C111.403 (8)C8—H80.9300
O1—H10.8200C9—H90.9300
C1—C61.365 (7)C10—C111.514 (9)
C1—C21.371 (7)C10—H10A0.9700
C2—C31.377 (7)C10—H10B0.9700
C2—H20.9300C11—H11A0.9700
C3—C41.347 (9)C11—H11B0.9700
C3—H30.9300
C8—N1—N2103.5 (4)C1—C6—H6120.8
N1—N2—N3114.8 (3)C5—C6—H6120.8
N1—N2—C1122.1 (4)N3—C7—C8109.0 (4)
N3—N2—C1123.1 (4)N3—C7—C9122.7 (4)
C7—N3—N2103.4 (3)C8—C7—C9128.3 (4)
C9—N4—C10117.4 (4)N1—C8—C7109.3 (4)
C11—O1—H1109.5N1—C8—H8125.4
C6—C1—C2120.8 (5)C7—C8—H8125.4
C6—C1—N2119.5 (5)N4—C9—C7120.7 (4)
C2—C1—N2119.7 (5)N4—C9—H9119.6
C1—C2—C3119.8 (6)C7—C9—H9119.6
C1—C2—H2120.1N4—C10—C11109.7 (5)
C3—C2—H2120.1N4—C10—H10A109.7
C4—C3—C2119.8 (7)C11—C10—H10A109.7
C4—C3—H3120.1N4—C10—H10B109.7
C2—C3—H3120.1C11—C10—H10B109.7
C3—C4—C5121.1 (6)H10A—C10—H10B108.2
C3—C4—H4119.4O1—C11—C10113.5 (5)
C5—C4—H4119.4O1—C11—H11A108.9
C4—C5—C6120.1 (6)C10—C11—H11A108.9
C4—C5—H5119.9O1—C11—H11B108.9
C6—C5—H5119.9C10—C11—H11B108.9
C1—C6—C5118.3 (6)H11A—C11—H11B107.7
C8—N1—N2—N30.0 (8)C2—C1—C6—C50.1 (10)
C8—N1—N2—C1179.4 (6)N2—C1—C6—C5178.7 (6)
N1—N2—N3—C70.3 (7)C4—C5—C6—C11.8 (11)
C1—N2—N3—C7179.8 (5)N2—N3—C7—C80.5 (7)
N1—N2—C1—C6165.0 (6)N2—N3—C7—C9178.2 (5)
N3—N2—C1—C614.4 (9)N2—N1—C8—C70.4 (8)
N1—N2—C1—C213.6 (10)N3—C7—C8—N10.6 (8)
N3—N2—C1—C2166.9 (6)C9—C7—C8—N1178.0 (6)
C6—C1—C2—C31.0 (11)C10—N4—C9—C7176.9 (6)
N2—C1—C2—C3179.6 (6)N3—C7—C9—N4173.2 (6)
C1—C2—C3—C40.1 (11)C8—C7—C9—N48.4 (11)
C2—C3—C4—C51.8 (12)C9—N4—C10—C11115.1 (7)
C3—C4—C5—C62.8 (12)N4—C10—C11—O171.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.822.022.835 (6)173
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N4O
Mr216.25
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)13.124 (5), 12.770 (5), 6.658 (3)
V3)1115.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.07 × 0.03
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5534, 1196, 596
Rint0.084
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.135, 1.01
No. of reflections1196
No. of parameters146
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.822.022.835 (6)173.1
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by the Key Laboratory of Colloid Interface Chemistry of the Ministry of Education (200707). Binzhou University is also thanked for supporting this work (BZXYQNLG200820).

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBorisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46–79.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMaheswari, P. U., Roy, S., Dulk, H., Barends, S., Wezel, G., Kozlevcar, B., Gamez, P. & Reedijk, J. (2006). J. Am. Chem. Soc. 128, 710–711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNate, H., Sekine, Y., Oda, K., Aoe, K., Nakai, H., Wada, H., Takeda, M., Yabana, H. & Nagao, T. (1987). Chem. Pharm. Bull. 35, 3253–3260.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83–o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds