metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­ethyl­enetri­amine)bis­­(theophyllinato)zinc(II) dihydrate

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany János Street, RO-400028 Cluj-Napoca, Romania
*Correspondence e-mail: eforizs@chem.ubbcluj.ro

(Received 13 March 2009; accepted 22 April 2009; online 30 April 2009)

In the title compound, [Zn(C7H7N4O2)2(C4H13N3)]·2H2O, the ZnII ion is penta­coordinated by three N atoms of the diethyl­enetriamine ligand and one N atom of each of the two theophyllinate anions in a distorted trigonal-bipyramidal geometry. The Zn—N distances range from 2.076 (3) to 2.221 (3) Å. The crystal packing is stabilized by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds involving the theophylline and diethyl­enetriamine ligands and uncoordinated water mol­ecules.

Related literature

For the isostructural copper(II) compound, see Sorrell et al. (1976[Sorrell, T., Marzilli, L. G. & Kistenmacher, T. J. (1976). J. Am. Chem. Soc. 98, 2181-2188.]). For the theophylline mol­ecule acting as a monodentate anionic ligand, see: Begum & Manohar (1994[Begum, N. S. & Manohar, H. (1994). Polyhedron, 13, 307-312.]); Birdsall & Zitzman (1979[Birdsall, W. J. & Zitzman, M. S. (1979). J. Inorg. Nucl. Chem. 41, 116-117.]); Bombicz et al. (1997[Bombicz, P., Madarász, J., Forizs, E. & Foch, I. (1997). Polyhedron, 16, 3601-3607.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H7N4O2)2(C4H13N3)]·2H2O

  • Mr = 562.91

  • Monoclinic, P 21 /c

  • a = 18.4655 (13) Å

  • b = 8.2603 (6) Å

  • c = 15.9252 (12) Å

  • β = 98.904 (1)°

  • V = 2399.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 297 K

  • 0.26 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.854

  • 16801 measured reflections

  • 4214 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.15

  • 4214 reflections

  • 349 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯N8i 0.83 (2) 2.01 (3) 2.835 (5) 177 (3)
O5—H2⋯O4 0.82 (6) 2.00 (6) 2.801 (5) 167 (6)
O6—H3⋯O2 0.82 (2) 2.10 (4) 2.914 (4) 169 (4)
O6—H4⋯N4ii 0.81 (5) 2.16 (6) 2.957 (5) 168 (4)
N9—H9A⋯O6 0.90 2.23 3.096 (5) 161
N9—H9B⋯O3iii 0.90 2.42 3.213 (4) 147 (2)
N11—H11B⋯O3iv 0.90 2.07 2.962 (4) 169 (2)
N10—H10⋯O1v 0.84 (3) 2.21 (3) 2.961 (4) 151 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Research concerning transition metal complexes of theophylline have attracted considerable interest because they serve as model compounds for the study of the interaction between metal ions and oxopurine bases of nucleic acids. In basic media, the theophylline molecule acts as a monodentate anionic ligand and coordinates through the N(7) atom (Begum et al.,1994; Birdsall & Zitzman, 1979; Bombicz et al., 1997). We report here the crystal structure of (diethylenetriamine)bis(theophyllinato)zinc(II) dihydrate containing deprotonated theophyllinato anion ligands. The diethylenetriamine acts as a tridentate chelating ligand. The crystal structure is built of discrete molecules of the Zn(II) complex (Fig. 1). The Zn(II) ion is five-coordinate in a distorted trigonal-bipyramidal environment. The terminal nitrogen atoms of diethylenetriamine and the N3 nitrogen atom of one theophyllinato ion define the equatorial plane. The second theophyllinato anion and the middle nitrogen atom of diethylenetriamine occupy the axial positions, with a N7—Zn1—N10 angle of 165.13 (12)°.

The isostructural copper(II) complex had been described earlier (Sorrell et al., 1976).

Related literature top

For the isostructural copper(II) compound, see Sorrell et al. (1976). For the theophylline molecule acting as a monodentate anionic ligand in basic media, see: Begum & Manohar (1994); Birdsall & Zitzman (1979); Bombicz et al. (1997).

Experimental top

To a suspension of theophylline (0.4 g, 2.22 mmol) in water (15 cm3), diethylenetriamine (0.5 cm3) was added. The obtained clear solution was mixed with a solution of Zn(CH3COO)2 .2 H2O (0.2195 g, 1 mmol) in a diethylenetriamine–water mixture (1 cm3 of diethylenetriamine in 5 cm3 of water). The reaction mixture was stirred at 50°C for 30 min. and stored at room temperature over night. The white polycrystalline powder formed was collected by filtration, washed with aqueous diethylenetriamine (5%) and dried. Colourless single crystals were obtained by recrystallization from aqueous solutions after standing at room temperature 6 days.

Refinement top

All hydrogen atoms except those in the two water molecules were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso= 1.5Ueq (C) for methyl H and Uiso= 1.2Ueq (C) for aryl H. The methyl groups were allowed to rotate but not to tip. Hydrogen atoms from the two water molecules were found from difference map and refined with a restrained O—H distance of 0.82 (2) Å, 0.825 (19), 0.82 (2)Å and 0.814 (19) Å, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
(Diethylenetriamine)bis(theophyllinato)zinc(II) dihydrate top
Crystal data top
[Zn(C7H7N4O2)2(C4H13N3)]·2H2OF(000) = 1176
Mr = 562.91Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3820 reflections
a = 18.4655 (13) Åθ = 2.6–22.8°
b = 8.2603 (6) ŵ = 1.08 mm1
c = 15.9252 (12) ÅT = 297 K
β = 98.904 (1)°Block, colourless
V = 2399.8 (3) Å30.26 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4214 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2121
Tmin = 0.766, Tmax = 0.854k = 99
16801 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0449P)2 + 2.691P]
where P = (Fo2 + 2Fc2)/3
4214 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.53 e Å3
5 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C7H7N4O2)2(C4H13N3)]·2H2OV = 2399.8 (3) Å3
Mr = 562.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.4655 (13) ŵ = 1.08 mm1
b = 8.2603 (6) ÅT = 297 K
c = 15.9252 (12) Å0.26 × 0.25 × 0.15 mm
β = 98.904 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3800 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.854Rint = 0.041
16801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0495 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.53 e Å3
4214 reflectionsΔρmin = 0.34 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.090 (3)0.882 (7)0.814 (4)0.12 (3)*
H10.111 (3)1.030 (3)0.801 (3)0.064 (15)*
H30.3221 (19)0.383 (6)0.733 (3)0.077 (19)*
H40.303 (3)0.295 (5)0.670 (3)0.066 (16)*
C10.36750 (17)0.4373 (4)0.9496 (2)0.0274 (7)
C20.38322 (18)0.3506 (4)1.0237 (2)0.0285 (7)
C30.4959 (2)0.2550 (4)0.9884 (2)0.0354 (8)
C40.41449 (18)0.4342 (4)0.8878 (2)0.0315 (8)
C50.28123 (19)0.4589 (4)1.0227 (2)0.0339 (8)
H50.23720.48921.03970.041*
C60.4625 (3)0.1727 (5)1.1240 (3)0.0562 (12)
H6A0.51460.16341.14060.084*
H6B0.44120.06661.11680.084*
H6C0.44190.22981.16720.084*
C70.5323 (2)0.3326 (5)0.8547 (3)0.0483 (10)
H7A0.58090.33890.88630.072*
H7B0.52470.42050.81490.072*
H7C0.52640.23160.82450.072*
C80.06859 (17)0.5122 (4)0.8720 (2)0.0276 (7)
C90.04497 (18)0.3547 (4)0.8627 (2)0.0287 (7)
C100.07285 (18)0.4197 (4)0.8940 (2)0.0304 (8)
C110.02094 (18)0.6365 (4)0.8909 (2)0.0297 (8)
C120.1516 (2)0.3635 (4)0.8352 (3)0.0387 (9)
H120.19590.33090.81970.046*
C130.0440 (2)0.1359 (4)0.8707 (3)0.0462 (10)
H13A0.08500.11760.89990.069*
H13B0.00340.07040.89590.069*
H13C0.05730.10740.81190.069*
C140.1046 (2)0.7002 (5)0.9130 (3)0.0489 (11)
H14A0.14530.69210.86770.073*
H14B0.08370.80660.91310.073*
H14C0.12120.68100.96630.073*
C150.3002 (3)0.7952 (6)0.7322 (3)0.0603 (13)
H15A0.29260.83330.67390.072*
H15B0.34460.73080.74120.072*
C160.3077 (3)0.9341 (6)0.7908 (3)0.0646 (14)
H16A0.26701.00800.77500.077*
H16B0.35270.99170.78620.077*
C170.2874 (3)1.0025 (6)0.9349 (4)0.0683 (14)
H17A0.25251.07550.90250.082*
H17B0.33001.06520.95880.082*
C180.2545 (3)0.9303 (7)1.0032 (3)0.0739 (15)
H18A0.23491.01501.03530.089*
H18B0.29180.87271.04140.089*
N10.44707 (15)0.2614 (4)1.04420 (18)0.0335 (7)
N20.47870 (15)0.3428 (4)0.91318 (18)0.0340 (7)
N30.29968 (14)0.5092 (3)0.94963 (18)0.0305 (6)
N40.32938 (16)0.3619 (3)1.07095 (18)0.0338 (7)
N50.02331 (15)0.3060 (3)0.87753 (19)0.0318 (7)
N60.04898 (14)0.5793 (3)0.90045 (18)0.0310 (6)
N70.13966 (15)0.5172 (3)0.85451 (19)0.0322 (7)
N80.09705 (15)0.2580 (4)0.8390 (2)0.0373 (7)
N90.23797 (17)0.6963 (4)0.74736 (19)0.0414 (8)
H9A0.24190.59730.72490.050*
H9B0.19630.74150.72080.050*
N100.30890 (18)0.8803 (4)0.8791 (2)0.0423 (8)
N110.19553 (17)0.8177 (4)0.9694 (2)0.0401 (7)
H11A0.15540.87340.94670.048*
H11B0.18380.75521.01160.048*
O10.55292 (14)0.1781 (3)1.00333 (18)0.0511 (7)
O20.40477 (14)0.4991 (4)0.81732 (16)0.0483 (7)
O30.13559 (13)0.3833 (3)0.90348 (17)0.0390 (6)
O40.03442 (14)0.7823 (3)0.89879 (19)0.0457 (7)
O50.11729 (18)0.9342 (4)0.7883 (2)0.0525 (7)
O60.2845 (2)0.3503 (5)0.7033 (2)0.0656 (9)
Zn10.23190 (2)0.67315 (5)0.87641 (2)0.02884 (14)
H100.3487 (14)0.837 (4)0.899 (2)0.034 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (17)0.0277 (17)0.0301 (18)0.0005 (14)0.0028 (14)0.0007 (14)
C20.0288 (18)0.0260 (17)0.0304 (18)0.0010 (14)0.0036 (14)0.0025 (14)
C30.0291 (19)0.039 (2)0.036 (2)0.0001 (16)0.0010 (15)0.0070 (16)
C40.0286 (18)0.0322 (19)0.0332 (19)0.0001 (15)0.0026 (15)0.0018 (15)
C50.0290 (19)0.0335 (19)0.041 (2)0.0038 (15)0.0124 (16)0.0039 (16)
C60.058 (3)0.063 (3)0.046 (2)0.022 (2)0.001 (2)0.020 (2)
C70.038 (2)0.067 (3)0.043 (2)0.004 (2)0.0171 (18)0.006 (2)
C80.0238 (17)0.0244 (17)0.0352 (19)0.0013 (13)0.0062 (14)0.0029 (14)
C90.0250 (17)0.0251 (17)0.0364 (19)0.0020 (14)0.0055 (14)0.0019 (14)
C100.0270 (18)0.0306 (18)0.0340 (19)0.0015 (15)0.0063 (15)0.0035 (15)
C110.0251 (18)0.0255 (18)0.0388 (19)0.0033 (14)0.0056 (15)0.0042 (14)
C120.0279 (19)0.031 (2)0.058 (2)0.0012 (15)0.0122 (17)0.0094 (17)
C130.041 (2)0.0244 (19)0.076 (3)0.0059 (16)0.016 (2)0.0028 (19)
C140.034 (2)0.034 (2)0.082 (3)0.0075 (17)0.020 (2)0.001 (2)
C150.055 (3)0.079 (3)0.051 (3)0.008 (2)0.018 (2)0.025 (2)
C160.055 (3)0.061 (3)0.079 (3)0.014 (2)0.012 (2)0.037 (3)
C170.069 (3)0.039 (2)0.098 (4)0.022 (2)0.017 (3)0.013 (3)
C180.087 (4)0.070 (3)0.066 (3)0.027 (3)0.019 (3)0.030 (3)
N10.0323 (16)0.0346 (16)0.0322 (16)0.0086 (13)0.0007 (13)0.0038 (13)
N20.0273 (15)0.0428 (18)0.0329 (16)0.0022 (13)0.0073 (12)0.0020 (13)
N30.0238 (14)0.0297 (15)0.0376 (16)0.0020 (12)0.0031 (12)0.0070 (13)
N40.0340 (16)0.0342 (16)0.0346 (16)0.0023 (13)0.0097 (13)0.0046 (13)
N50.0281 (15)0.0236 (14)0.0450 (17)0.0029 (12)0.0095 (13)0.0013 (12)
N60.0219 (14)0.0273 (15)0.0456 (17)0.0038 (12)0.0111 (13)0.0034 (13)
N70.0239 (15)0.0273 (15)0.0469 (18)0.0017 (12)0.0103 (13)0.0022 (13)
N80.0282 (16)0.0282 (16)0.057 (2)0.0001 (13)0.0113 (14)0.0079 (14)
N90.0367 (17)0.0494 (19)0.0383 (18)0.0024 (15)0.0058 (14)0.0081 (15)
N100.0326 (18)0.0337 (17)0.059 (2)0.0045 (15)0.0026 (16)0.0033 (16)
N110.0415 (18)0.0365 (17)0.0432 (18)0.0012 (14)0.0092 (14)0.0008 (14)
O10.0320 (15)0.0621 (19)0.0577 (18)0.0190 (14)0.0019 (13)0.0007 (14)
O20.0422 (16)0.0691 (19)0.0353 (15)0.0063 (14)0.0111 (12)0.0141 (14)
O30.0256 (13)0.0393 (14)0.0547 (16)0.0036 (11)0.0146 (11)0.0010 (12)
O40.0357 (14)0.0243 (13)0.080 (2)0.0025 (11)0.0175 (14)0.0025 (13)
O50.062 (2)0.0422 (18)0.0586 (19)0.0043 (16)0.0245 (16)0.0083 (15)
O60.054 (2)0.081 (3)0.063 (2)0.0078 (19)0.0140 (18)0.0266 (19)
Zn10.0249 (2)0.0272 (2)0.0351 (2)0.00167 (16)0.00696 (16)0.00309 (17)
Geometric parameters (Å, º) top
C1—C21.372 (5)C13—H13A0.9600
C1—N31.386 (4)C13—H13B0.9600
C1—C41.410 (5)C13—H13C0.9600
C2—N41.339 (4)C14—N61.468 (4)
C2—N11.386 (4)C14—H14A0.9600
C3—O11.221 (4)C14—H14B0.9600
C3—N11.362 (5)C14—H14C0.9600
C3—N21.393 (5)C15—N91.459 (5)
C4—O21.231 (4)C15—C161.472 (7)
C4—N21.411 (4)C15—H15A0.9700
C5—N31.329 (4)C15—H15B0.9700
C5—N41.346 (4)C16—N101.472 (6)
C5—H50.9300C16—H16A0.9700
C6—N11.456 (5)C16—H16B0.9700
C6—H6A0.9600C17—N101.441 (6)
C6—H6B0.9600C17—C181.454 (7)
C6—H6C0.9600C17—H17A0.9700
C7—N21.463 (4)C17—H17B0.9700
C7—H7A0.9600C18—N111.469 (5)
C7—H7B0.9600C18—H18A0.9700
C7—H7C0.9600C18—H18B0.9700
C8—C91.373 (5)N3—Zn12.076 (3)
C8—N71.384 (4)N7—Zn12.121 (3)
C8—C111.415 (4)N9—Zn12.084 (3)
C9—N81.348 (4)N9—H9A0.9000
C9—N51.378 (4)N9—H9B0.9000
C10—O31.229 (4)N10—Zn12.221 (3)
C10—N51.365 (4)N10—H100.834 (19)
C10—N61.388 (4)N11—Zn12.093 (3)
C11—O41.232 (4)N11—H11A0.9000
C11—N61.405 (4)N11—H11B0.9000
C12—N71.333 (4)O5—H20.82 (6)
C12—N81.341 (5)O5—H10.825 (19)
C12—H120.9300O6—H30.82 (2)
C13—N51.456 (4)O6—H40.81 (5)
C2—C1—N3107.1 (3)N10—C16—H16B109.5
C2—C1—C4121.4 (3)H16A—C16—H16B108.1
N3—C1—C4131.4 (3)N10—C17—C18111.2 (4)
N4—C2—C1111.7 (3)N10—C17—H17A109.4
N4—C2—N1125.7 (3)C18—C17—H17A109.4
C1—C2—N1122.6 (3)N10—C17—H17B109.4
O1—C3—N1122.0 (3)C18—C17—H17B109.4
O1—C3—N2120.9 (3)H17A—C17—H17B108.0
N1—C3—N2117.0 (3)C17—C18—N11111.0 (4)
O2—C4—C1127.6 (3)C17—C18—H18A109.4
O2—C4—N2119.5 (3)N11—C18—H18A109.4
C1—C4—N2112.9 (3)C17—C18—H18B109.4
N3—C5—N4116.7 (3)N11—C18—H18B109.4
N3—C5—H5121.6H18A—C18—H18B108.0
N4—C5—H5121.6C3—N1—C2119.5 (3)
N1—C6—H6A109.5C3—N1—C6119.4 (3)
N1—C6—H6B109.5C2—N1—C6121.1 (3)
H6A—C6—H6B109.5C3—N2—C4126.5 (3)
N1—C6—H6C109.5C3—N2—C7115.5 (3)
H6A—C6—H6C109.5C4—N2—C7118.0 (3)
H6B—C6—H6C109.5C5—N3—C1102.7 (3)
N2—C7—H7A109.5C5—N3—Zn1118.8 (2)
N2—C7—H7B109.5C1—N3—Zn1138.2 (2)
H7A—C7—H7B109.5C2—N4—C5101.7 (3)
N2—C7—H7C109.5C10—N5—C9119.3 (3)
H7A—C7—H7C109.5C10—N5—C13120.2 (3)
H7B—C7—H7C109.5C9—N5—C13120.4 (3)
C9—C8—N7107.6 (3)C10—N6—C11126.7 (3)
C9—C8—C11120.9 (3)C10—N6—C14115.8 (3)
N7—C8—C11131.4 (3)C11—N6—C14117.4 (3)
N8—C9—C8111.3 (3)C12—N7—C8102.4 (3)
N8—C9—N5125.9 (3)C12—N7—Zn1117.3 (2)
C8—C9—N5122.8 (3)C8—N7—Zn1138.4 (2)
O3—C10—N5121.9 (3)C12—N8—C9101.6 (3)
O3—C10—N6121.2 (3)C15—N9—Zn1112.2 (3)
N5—C10—N6117.0 (3)C15—N9—H9A109.2
O4—C11—N6119.5 (3)Zn1—N9—H9A109.2
O4—C11—C8127.5 (3)C15—N9—H9B109.2
N6—C11—C8113.0 (3)Zn1—N9—H9B109.2
N7—C12—N8117.1 (3)H9A—N9—H9B107.9
N7—C12—H12121.4C17—N10—C16114.4 (4)
N8—C12—H12121.4C17—N10—Zn1108.4 (3)
N5—C13—H13A109.5C16—N10—Zn1107.4 (3)
N5—C13—H13B109.5C17—N10—H10112 (3)
H13A—C13—H13B109.5C16—N10—H10112 (3)
N5—C13—H13C109.5Zn1—N10—H10102 (3)
H13A—C13—H13C109.5C18—N11—Zn1108.6 (3)
H13B—C13—H13C109.5C18—N11—H11A110.0
N6—C14—H14A109.5Zn1—N11—H11A110.0
N6—C14—H14B109.5C18—N11—H11B110.0
H14A—C14—H14B109.5Zn1—N11—H11B110.0
N6—C14—H14C109.5H11A—N11—H11B108.3
H14A—C14—H14C109.5H2—O5—H1105 (6)
H14B—C14—H14C109.5H3—O6—H498 (5)
N9—C15—C16109.3 (4)N3—Zn1—N9119.60 (12)
N9—C15—H15A109.8N3—Zn1—N11101.91 (12)
C16—C15—H15A109.8N9—Zn1—N11135.87 (13)
N9—C15—H15B109.8N3—Zn1—N795.46 (11)
C16—C15—H15B109.8N9—Zn1—N793.33 (12)
H15A—C15—H15B108.3N11—Zn1—N797.20 (12)
C15—C16—N10110.9 (4)N3—Zn1—N1099.41 (12)
C15—C16—H16A109.5N9—Zn1—N1079.40 (13)
N10—C16—H16A109.5N11—Zn1—N1079.72 (13)
C15—C16—H16B109.5N7—Zn1—N10165.13 (12)
N3—C1—C2—N40.4 (4)O3—C10—N6—C144.2 (5)
C4—C1—C2—N4175.9 (3)N5—C10—N6—C14176.4 (3)
N3—C1—C2—N1179.3 (3)O4—C11—N6—C10179.7 (3)
C4—C1—C2—N13.0 (5)C8—C11—N6—C100.7 (5)
C2—C1—C4—O2175.9 (4)O4—C11—N6—C144.6 (5)
N3—C1—C4—O20.6 (6)C8—C11—N6—C14174.9 (3)
C2—C1—C4—N23.4 (5)N8—C12—N7—C80.8 (4)
N3—C1—C4—N2178.7 (3)N8—C12—N7—Zn1166.3 (3)
N7—C8—C9—N80.8 (4)C9—C8—N7—C120.9 (4)
C11—C8—C9—N8175.6 (3)C11—C8—N7—C12174.9 (4)
N7—C8—C9—N5178.4 (3)C9—C8—N7—Zn1161.7 (3)
C11—C8—C9—N55.3 (5)C11—C8—N7—Zn122.4 (6)
C9—C8—C11—O4178.1 (4)N7—C12—N8—C90.4 (4)
N7—C8—C11—O42.7 (6)C8—C9—N8—C120.3 (4)
C9—C8—C11—N61.5 (5)N5—C9—N8—C12178.8 (3)
N7—C8—C11—N6176.9 (3)C16—C15—N9—Zn140.5 (4)
N9—C15—C16—N1051.5 (5)C18—C17—N10—C16151.2 (4)
N10—C17—C18—N1151.8 (6)C18—C17—N10—Zn131.4 (5)
O1—C3—N1—C2179.9 (3)C15—C16—N10—C17156.8 (4)
N2—C3—N1—C21.0 (5)C15—C16—N10—Zn136.5 (4)
O1—C3—N1—C60.6 (5)C17—C18—N11—Zn144.9 (5)
N2—C3—N1—C6179.7 (3)C5—N3—Zn1—N9159.7 (2)
N4—C2—N1—C3177.2 (3)C1—N3—Zn1—N927.1 (4)
C1—C2—N1—C31.6 (5)C5—N3—Zn1—N1135.9 (3)
N4—C2—N1—C62.2 (5)C1—N3—Zn1—N11137.4 (3)
C1—C2—N1—C6179.1 (3)C5—N3—Zn1—N762.7 (3)
O1—C3—N2—C4179.0 (3)C1—N3—Zn1—N7124.1 (3)
N1—C3—N2—C42.0 (5)C5—N3—Zn1—N10117.2 (3)
O1—C3—N2—C71.1 (5)C1—N3—Zn1—N1056.0 (4)
N1—C3—N2—C7179.8 (3)C15—N9—Zn1—N379.2 (3)
O2—C4—N2—C3176.3 (3)C15—N9—Zn1—N1178.7 (3)
C1—C4—N2—C33.1 (5)C15—N9—Zn1—N7177.4 (3)
O2—C4—N2—C71.5 (5)C15—N9—Zn1—N1015.6 (3)
C1—C4—N2—C7179.1 (3)C18—N11—Zn1—N377.1 (3)
N4—C5—N3—C10.1 (4)C18—N11—Zn1—N983.3 (3)
N4—C5—N3—Zn1175.3 (2)C18—N11—Zn1—N7174.3 (3)
C2—C1—N3—C50.2 (4)C18—N11—Zn1—N1020.4 (3)
C4—C1—N3—C5175.5 (4)C12—N7—Zn1—N343.4 (3)
C2—C1—N3—Zn1173.7 (3)C8—N7—Zn1—N3117.4 (3)
C4—C1—N3—Zn110.5 (6)C12—N7—Zn1—N976.8 (3)
C1—C2—N4—C50.3 (4)C8—N7—Zn1—N9122.4 (4)
N1—C2—N4—C5179.2 (3)C12—N7—Zn1—N11146.2 (3)
N3—C5—N4—C20.1 (4)C8—N7—Zn1—N1114.6 (4)
O3—C10—N5—C9176.3 (3)C12—N7—Zn1—N10136.8 (5)
N6—C10—N5—C94.2 (5)C8—N7—Zn1—N1062.4 (7)
O3—C10—N5—C130.0 (5)C17—N10—Zn1—N3106.1 (3)
N6—C10—N5—C13179.4 (3)C16—N10—Zn1—N3129.9 (3)
N8—C9—N5—C10174.3 (3)C17—N10—Zn1—N9135.3 (3)
C8—C9—N5—C106.7 (5)C16—N10—Zn1—N911.3 (3)
N8—C9—N5—C132.1 (5)C17—N10—Zn1—N115.6 (3)
C8—C9—N5—C13176.9 (3)C16—N10—Zn1—N11129.6 (3)
O3—C10—N6—C11179.9 (3)C17—N10—Zn1—N773.7 (6)
N5—C10—N6—C110.7 (5)C16—N10—Zn1—N750.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···N8i0.83 (2)2.01 (3)2.835 (5)177 (3)
O5—H2···O40.82 (6)2.00 (6)2.801 (5)167 (6)
O6—H3···O20.82 (2)2.10 (4)2.914 (4)169 (4)
O6—H4···N4ii0.81 (5)2.16 (6)2.957 (5)168 (4)
N9—H9A···O60.902.233.096 (5)161
N9—H9B···O3iii0.902.423.213 (4)147 (2)
N11—H11B···O3iv0.902.072.962 (4)169 (2)
N10—H10···O1v0.84 (3)2.21 (3)2.961 (4)151 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+1, z+2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C7H7N4O2)2(C4H13N3)]·2H2O
Mr562.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)18.4655 (13), 8.2603 (6), 15.9252 (12)
β (°) 98.904 (1)
V3)2399.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.26 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.766, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
16801, 4214, 3800
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.15
No. of reflections4214
No. of parameters349
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.34

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···N8i0.83 (2)2.01 (3)2.835 (5)177 (3)
O5—H2···O40.82 (6)2.00 (6)2.801 (5)167 (6)
O6—H3···O20.82 (2)2.10 (4)2.914 (4)169 (4)
O6—H4···N4ii0.81 (5)2.16 (6)2.957 (5)168 (4)
N9—H9A···O60.902.233.096 (5)161
N9—H9B···O3iii0.902.423.213 (4)147 (2)
N11—H11B···O3iv0.902.072.962 (4)169 (2)
N10—H10···O1v0.84 (3)2.21 (3)2.961 (4)151 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+1, z+2; (v) x+1, y+1, z+2.
 

Acknowledgements

We thank Dr Richard Attila Varga and the National Center for X-ray Diffraction in Cluj-Napoca for assistance with the structure determination.

References

First citationBegum, N. S. & Manohar, H. (1994). Polyhedron, 13, 307–312.  CSD CrossRef CAS Web of Science Google Scholar
First citationBirdsall, W. J. & Zitzman, M. S. (1979). J. Inorg. Nucl. Chem. 41, 116–117.  CrossRef CAS Web of Science Google Scholar
First citationBombicz, P., Madarász, J., Forizs, E. & Foch, I. (1997). Polyhedron, 16, 3601–3607.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorrell, T., Marzilli, L. G. & Kistenmacher, T. J. (1976). J. Am. Chem. Soc. 98, 2181–2188.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds