organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1050

5-Iso­propyl­­idene-1,3-di­thiolo[4,5-d][1,3]di­thiole-2-thione

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
*Correspondence e-mail: tomura@ims.ac.jp

(Received 6 April 2009; accepted 8 April 2009; online 18 April 2009)

The title compound, C7H6S5, contains a 5-yl­idene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione framework, which is an important synthetic precursor of multi-dimensional organic superconductors and conductors. The mol­ecular framework is planar with an r.m.s. deviation of 0.012 Å for the non-H atoms. In the crystal structure, mol­ecules are linked by short inter­molecular S⋯S inter­actions [3.501 (5) and 3.581 (4) Å], constructing a zigzag mol­ecular tape network along the c axis.

Related literature

For general background, see: Williams et al. (1992[Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall.]); Ishiguro et al. (1998[Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.]). For the synthesis of the title compound, see: Misaki et al. (1992[Misaki, Y., Nishikawa, H., Kawakami, K., Uehara, T. & Yamabe, T. (1992). Tetrahedron Lett. 33, 4321-4324.]). For related structures with a 5-yl­idene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione framework, see: Bryce et al. (2000[Bryce, M. R., Finn, T., Moore, A. J. & Batsanov, A. S. (2000). Eur. J. Org. Chem. pp. 51-60.]); Hock et al. (2002[Hock, J., Gompper, R. & Polborn, K. (2002). Private communication (refcode VADDIO). CCDC, Cambridge, England.]); Beck et al. (2006[Beck, J., Daniels, J., Roloff, A. & Wagner, W. (2006). Dalton Trans. pp. 1174-1180.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For values of van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6S5

  • Mr = 250.47

  • Triclinic, [P \overline 1]

  • a = 7.082 (6) Å

  • b = 7.126 (6) Å

  • c = 10.534 (10) Å

  • α = 86.12 (3)°

  • β = 84.77 (3)°

  • γ = 71.95 (2)°

  • V = 502.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 291 K

  • 0.09 × 0.02 × 0.01 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 4550 measured reflections

  • 2643 independent reflections

  • 785 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.246

  • S = 0.84

  • 2643 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing an 5-ylidene-[1,3]dithiolo[4,5-d][1,3]dithiole-2-thione framework are important synthetic precursors of multi-dimensional organic superconductors and conductors. Intermolecular S···S interactions involving peripheral sulfir atoms may increase the dimensionality in solid states and suppress metal-insulator transitions (Williams et al., 1992; Ishiguro et al., 1998). A search for the molecular framework in the Cambridge Structural Database (Version 5.30; Allen, 2002) gave only three examples (Bryce et al., 2000; Hock et al., 2002; Beck et al., 2006). Thus, we report here the molecular and crystal structures of the title compound (I).

The compound (I) crystallizes in the P1 space group with one molecule in the asymmetric unit. The molecular structure is shown in Fig. 1. The bond lengths are within the normal ranges (Allen et al., 1987). The molecular framework is planar with an r.m.s. deviation of 0.012 Å from the least-squares plane. In the crystal structure, the molecules are linked via short intermolecular S···S interactions [3.581 (4) for S1—S1(-x, -y + 3, -z) and 3.501 (5) Å for S5—S5(-x, -y + 3, -z - 1)] to construct a zigzag molecular tape network along the c axis (Fig. 2). The S···S interactions are 0.5–2.8% shorter than the sum of the corresponding van der Waals radii (Bondi, 1964). The molecules also form a π-stacking along the a axis with an interplanar distance of 3.54 (1) Å.

Related literature top

For general background, see: Williams et al. (1992); Ishiguro et al. (1998). For the synthesis of the title compound, see: Misaki et al. (1992). For related structures with a 5-ylidene-[1,3]dithiolo[4,5-d][1,3]dithiole-2-thione framework, see: Bryce et al. (2000); Hock et al. (2002); Beck et al. (2006). For bond-length data, see: Allen et al. (1987). For values of van der Waals radii, see: Bondi (1964). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound (I) was synthesized according to the literature method (Misaki et al., 1992). Brown crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis. Dashed lines indicate intermolecular S···S interactions.
5-Isopropylidene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione top
Crystal data top
C7H6S5Z = 2
Mr = 250.47F(000) = 256
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.082 (6) ÅCell parameters from 843 reflections
b = 7.126 (6) Åθ = 3.0–29.7°
c = 10.534 (10) ŵ = 1.09 mm1
α = 86.12 (3)°T = 291 K
β = 84.77 (3)°Needle, brown
γ = 71.95 (2)°0.09 × 0.02 × 0.01 mm
V = 502.9 (8) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
785 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.117
Confocal monochromatorθmax = 31.1°, θmin = 3.0°
Detector resolution: 14.63 pixels mm-1h = 99
ϕ and ω scansk = 1010
4550 measured reflectionsl = 1015
2643 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.246 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
2643 reflectionsΔρmax = 0.46 e Å3
112 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.003 (3)
Crystal data top
C7H6S5γ = 71.95 (2)°
Mr = 250.47V = 502.9 (8) Å3
Triclinic, P1Z = 2
a = 7.082 (6) ÅMo Kα radiation
b = 7.126 (6) ŵ = 1.09 mm1
c = 10.534 (10) ÅT = 291 K
α = 86.12 (3)°0.09 × 0.02 × 0.01 mm
β = 84.77 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
785 reflections with I > 2σ(I)
4550 measured reflectionsRint = 0.117
2643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 0.84Δρmax = 0.46 e Å3
2643 reflectionsΔρmin = 0.50 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1573 (3)1.3556 (3)0.12379 (19)0.0502 (6)
S20.2864 (3)0.9827 (3)0.25144 (18)0.0496 (6)
S30.1902 (3)1.1364 (3)0.13884 (18)0.0452 (6)
S40.3259 (3)0.7524 (3)0.00739 (18)0.0434 (6)
S50.1908 (4)1.3598 (4)0.4066 (2)0.0710 (9)
C10.2089 (11)1.2401 (12)0.2662 (7)0.048 (2)
C20.2080 (10)1.1425 (11)0.0257 (7)0.0427 (19)
C30.2706 (10)0.8745 (11)0.1547 (7)0.0407 (18)
C40.2678 (9)0.9729 (12)0.0871 (7)0.0385 (17)
C50.2896 (10)0.7741 (12)0.2681 (8)0.045 (2)
C60.2430 (11)0.8811 (12)0.3900 (7)0.056 (2)
H6A0.36020.84720.43650.084*
H6B0.13950.84390.44050.084*
H6C0.19941.02100.37110.084*
C70.3596 (11)0.5529 (11)0.2761 (7)0.049 (2)
H7A0.38180.50360.19170.073*
H7B0.26030.50560.32390.073*
H7C0.48160.50780.31790.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0512 (13)0.0409 (13)0.0522 (14)0.0080 (10)0.0035 (10)0.0126 (10)
S20.0551 (14)0.0473 (14)0.0417 (12)0.0113 (11)0.0001 (9)0.0038 (10)
S30.0519 (13)0.0337 (12)0.0451 (12)0.0077 (10)0.0010 (9)0.0006 (9)
S40.0513 (13)0.0308 (12)0.0429 (12)0.0058 (10)0.0014 (9)0.0009 (9)
S50.0751 (18)0.078 (2)0.0561 (16)0.0221 (15)0.0135 (12)0.0300 (13)
C10.049 (5)0.044 (5)0.047 (5)0.007 (4)0.011 (4)0.012 (4)
C20.046 (5)0.031 (5)0.047 (5)0.008 (4)0.002 (4)0.003 (4)
C30.040 (4)0.039 (5)0.040 (4)0.010 (4)0.004 (3)0.001 (3)
C40.032 (4)0.038 (4)0.040 (4)0.004 (3)0.006 (3)0.006 (3)
C50.039 (4)0.037 (5)0.058 (5)0.014 (4)0.013 (4)0.001 (4)
C60.066 (6)0.050 (6)0.051 (5)0.016 (5)0.002 (4)0.005 (4)
C70.056 (5)0.039 (5)0.049 (5)0.016 (4)0.002 (4)0.014 (4)
Geometric parameters (Å, º) top
S1—C11.716 (8)C3—C51.346 (10)
S1—C21.738 (8)C5—C61.496 (10)
S2—C41.723 (7)C5—C71.497 (10)
S2—C11.744 (8)C6—H6A0.9600
S3—C21.725 (8)C6—H6B0.9600
S3—C31.775 (8)C6—H6C0.9600
S4—C41.758 (7)C7—H7A0.9600
S4—C31.783 (7)C7—H7B0.9600
S5—C11.652 (7)C7—H7C0.9600
C2—C41.341 (10)
S1···S1i3.581 (4)S5···S5ii3.501 (5)
C1—S1—C296.7 (4)C3—C5—C6120.7 (8)
C4—S2—C194.9 (4)C3—C5—C7121.2 (7)
C2—S3—C394.4 (3)C6—C5—C7118.1 (7)
C4—S4—C394.3 (4)C5—C6—H6A109.5
S5—C1—S1123.5 (5)C5—C6—H6B109.5
S5—C1—S2122.1 (5)H6A—C6—H6B109.5
S1—C1—S2114.4 (4)C5—C6—H6C109.5
C4—C2—S3119.7 (6)H6A—C6—H6C109.5
C4—C2—S1115.0 (6)H6B—C6—H6C109.5
S3—C2—S1125.3 (5)C5—C7—H7A109.5
C5—C3—S3123.3 (6)C5—C7—H7B109.5
C5—C3—S4122.0 (6)H7A—C7—H7B109.5
S3—C3—S4114.6 (4)C5—C7—H7C109.5
C2—C4—S2118.9 (6)H7A—C7—H7C109.5
C2—C4—S4117.0 (6)H7B—C7—H7C109.5
S2—C4—S4124.1 (5)
C2—S1—C1—S5180.0 (5)S3—C2—C4—S2179.5 (4)
C2—S1—C1—S20.9 (5)S1—C2—C4—S20.4 (8)
C4—S2—C1—S5179.9 (5)S3—C2—C4—S40.3 (8)
C4—S2—C1—S10.8 (5)S1—C2—C4—S4178.8 (3)
C3—S3—C2—C40.3 (6)C1—S2—C4—C20.2 (6)
C3—S3—C2—S1178.7 (5)C1—S2—C4—S4179.3 (5)
C1—S1—C2—C40.8 (6)C3—S4—C4—C20.1 (6)
C1—S1—C2—S3179.8 (5)C3—S4—C4—S2179.2 (4)
C2—S3—C3—C5179.6 (7)S3—C3—C5—C60.2 (10)
C2—S3—C3—S40.2 (4)S4—C3—C5—C6179.7 (5)
C4—S4—C3—C5179.8 (7)S3—C3—C5—C7179.5 (5)
C4—S4—C3—S30.1 (4)S4—C3—C5—C70.3 (10)
Symmetry codes: (i) x, y+3, z; (ii) x, y+3, z1.

Experimental details

Crystal data
Chemical formulaC7H6S5
Mr250.47
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.082 (6), 7.126 (6), 10.534 (10)
α, β, γ (°)86.12 (3), 84.77 (3), 71.95 (2)
V3)502.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.09 × 0.02 × 0.01
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4550, 2643, 785
Rint0.117
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.246, 0.84
No. of reflections2643
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.50

Computer programs: CrystalClear (Rigaku/MSC, 2006), TEXSAN (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

 

Acknowledgements

The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeck, J., Daniels, J., Roloff, A. & Wagner, W. (2006). Dalton Trans. pp. 1174–1180.  Web of Science CSD CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBryce, M. R., Finn, T., Moore, A. J. & Batsanov, A. S. (2000). Eur. J. Org. Chem. pp. 51–60.  CrossRef Google Scholar
First citationHock, J., Gompper, R. & Polborn, K. (2002). Private communication (refcode VADDIO). CCDC, Cambridge, England.  Google Scholar
First citationIshiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMisaki, Y., Nishikawa, H., Kawakami, K., Uehara, T. & Yamabe, T. (1992). Tetrahedron Lett. 33, 4321–4324.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1050
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds