supplementary materials


Acta Cryst. (2009). E65, o1018    [ doi:10.1107/S1600536809012987 ]

(1-Adamantyl)(4-aminophenyl)methanol

M. Rouchal, M. Necas and R. Vícha

Abstract top

In the racemic crystal of the title compound, C17H23NO, enantiomers of the two crystallographically independent molecules are linked into face-to-face RSdimers via intermolecular O-H...N hydrogen bonds and [pi]-[pi] interactions with centroid-centroid distances of 3.7610 (2) Å. The molecules adopt slightly different conformations and contain an adamantane cage consisting of three fused cyclohexane rings in almost ideal chair conformations, with C-C-C angles varying within the range 107.2 (4)-111.4 (4)°. In the hydrogen-bonded pair, the benzene rings are almost coplanar, the dihedral angle between them being 1.29 (13)°. The molecular packing in the crystal is stabilized by additional intermolecular N-H...O hydrogen bonds.

Comment top

The title molecule belongs in the family of promising compounds destined for drugs improvement. Two contrary properties playing significant role in drug design may be modulated by introduction of suitable adamantane-bearing building block into the molecule. The lipophilic adamantane cage itself may increase solubility in non-polar systems (e.g. cell membranes), whereas the solubility in polar medium may be enhanced by the formation of non-covalent inclusion complex of adamantane cage with cyclodextrins (Cromwell et al. (1985), van Bommel et al. (2001)).

The selected asymmetric unit consists of enantiomers of two crystallographically independent molecules with slightly variant in geometries (Fig. 1). Both benzene rings are essentially planar with the maximum deviations from the best planes being 0.008 (4) Å for atom C16 in the first enantiomer and 0.012 (5) Å for atom C33 in the second one. The orientation of the benzene rings is almost coplanar with the dihedral angle between them being 1.29 (13)°. The torsion angles C21–C31–C32–C37 and C1–C11–C12–C17 are -89.7 (5) and 89.5 (5)° respectively. The two enantiomers are linked into pairs via two O1–H1A···N2 and O2–H2A···N1 hydrogen bonds (Table 1). Face-to-face π-π interactions stabilize pairs of enantiomers with the centroid-to-centroid distances of 3.7610 (2) Å (Cg1 and Cg2 are the centroids of the C12–C17 and C32–C37 respectively). Further N2–H2B···O2 and N1–H1B···O1 hydrogen bonds (Table 1, Fig. 2) cross-link the molecules forming the three-dimensional framework.

Related literature top

The title compound was prepared according to a modification of the procedure of Adkins & Billica (1948). For some important properties of adamantane-bearing compounds, see: Cromwell et al. (1985), van Bommel et al. (2001).

Experimental top

The title compound was prepared according to a modified literature procedure (Adkins & Billica, 1948). 1-Adamantyl-(4-nitrophenyl)methanol (0.35 mmol, 100 mg) was dissolved in 2 cm3 of dioxane and large excess of Raney nickel was added in one portion to this solution. The reaction mixture was vigorously stirred under H2 atmosphere at room temperature. After the consumption of all starting material (according to TLC), the mixture was diluted with 5 cm3 of water. The water layer was sequentially washed five times with 10 cm3 of diethyl ether. The combined organic layers were dried over sodium sulfate and evaporated in vacuum. After the purification of crude product by column chromatography (silica gel; petroleum ether/ethyl acetate, v/v, 1/1), the desired product was obtained as a pale yellow crystalline powder (88.3 mg, 98%, mp 143–146°C). The single crystals suitable for X-ray analysis were grown by spontaneous evaporation from deuterochloroform at room temperature.

Refinement top

Although several methods, solvents and conditions for crystal growth were tested, the best obtained sample consisted of poor quality crystals affording only a low quality data set. Thus the precision of refined parameters is lowered accordingly. The analysis of the most disagreeable reflections suggested no significant systematic trends which could be attributed to twinning (application of a twin law provided merely negligible improvement in precision) or experimental failures. The H atoms were constrained using standard SHELXL facilities with the exceptions of NH2 H atoms which were positioned from the diference Fourier map and refined fully.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids and H atoms are shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bond cross-linkage in the three-dimensional framework, viewed along the c axis, is drawn by dotted lines. Hydrogen atoms have been omitted for enhanced clarity.
(1-Adamantyl)(4-aminophenyl)methanol top
Crystal data top
C17H23NOF(000) = 1120
Mr = 257.36Dx = 1.201 Mg m3
Monoclinic, P21/nMelting point: 145 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.8107 (5) ÅCell parameters from 5001 reflections
b = 12.1593 (6) Åθ = 2.9–25.0°
c = 26.6047 (16) ŵ = 0.07 mm1
β = 93.046 (5)°T = 120 K
V = 2846.2 (3) Å3Block, white
Z = 80.40 × 0.40 × 0.10 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3444 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
graphiteθmax = 25.0°, θmin = 2.9°
Detector resolution: 0.06 pixels mm-1h = 109
ω scansk = 1314
20748 measured reflectionsl = 3031
5001 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.270H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0778P)2 + 11.8176P]
where P = (Fo2 + 2Fc2)/3
5001 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C17H23NOV = 2846.2 (3) Å3
Mr = 257.36Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.8107 (5) ŵ = 0.07 mm1
b = 12.1593 (6) ÅT = 120 K
c = 26.6047 (16) Å0.40 × 0.40 × 0.10 mm
β = 93.046 (5)°
Data collection top
Kuma KM-4 CCD
diffractometer
3444 reflections with I > 2σ(I)
20748 measured reflectionsRint = 0.039
5001 independent reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.094 w = 1/[σ2(Fo2) + (0.0778P)2 + 11.8176P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.270Δρmax = 0.49 e Å3
S = 1.19Δρmin = 0.45 e Å3
5001 reflectionsAbsolute structure: ?
359 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
H atoms treated by a mixture of independent and constrained refinement
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2678 (3)0.0244 (2)0.16941 (11)0.0232 (7)
H2A0.19040.00430.18410.035*
O10.2643 (3)0.3748 (2)0.32906 (12)0.0237 (7)
H1A0.18850.39580.31380.036*
N20.0279 (4)0.4483 (3)0.26652 (16)0.0233 (9)
N10.0312 (4)0.0498 (3)0.23253 (16)0.0212 (8)
C310.2335 (5)0.1227 (4)0.14084 (16)0.0204 (9)
H31A0.15420.10320.11400.025*
C360.1502 (4)0.2991 (3)0.25476 (16)0.0173 (9)
H36A0.18310.30430.28930.021*
C110.2249 (4)0.2800 (4)0.35820 (16)0.0188 (9)
H11A0.14470.30160.38430.023*
C370.2122 (4)0.2203 (3)0.22438 (16)0.0166 (9)
H37A0.28750.17180.23850.020*
C150.0345 (4)0.0279 (3)0.26470 (16)0.0176 (9)
C170.2079 (5)0.1796 (4)0.27497 (16)0.0208 (9)
H17A0.28480.22700.26100.025*
C350.0382 (5)0.3716 (3)0.23442 (16)0.0196 (9)
C160.1464 (4)0.0999 (4)0.24464 (16)0.0195 (9)
H16A0.18030.09410.21020.023*
C340.0086 (5)0.3614 (4)0.18438 (17)0.0221 (10)
H34A0.08410.40970.17020.026*
C140.0149 (5)0.0395 (4)0.31485 (17)0.0216 (10)
H14A0.09080.00850.32900.026*
C130.0459 (4)0.1208 (4)0.34459 (17)0.0217 (10)
H13A0.00920.12820.37870.026*
C320.1667 (4)0.2106 (3)0.17363 (16)0.0171 (9)
C330.0537 (5)0.2811 (4)0.15445 (17)0.0201 (9)
H33A0.01840.27440.12020.024*
C210.3783 (5)0.1564 (3)0.11427 (16)0.0189 (9)
C120.1594 (5)0.1918 (4)0.32555 (16)0.0193 (9)
C300.4344 (5)0.0582 (4)0.08343 (18)0.0247 (10)
H30A0.46030.00410.10630.030*
H30B0.35220.03390.05910.030*
C80.4950 (5)0.2002 (4)0.34928 (16)0.0211 (10)
H8A0.45710.13610.33070.025*
H8B0.52450.25810.32450.025*
C60.6949 (5)0.2663 (4)0.40555 (18)0.0285 (11)
H6A0.72430.32430.38080.034*
H6B0.78600.24580.42370.034*
C280.5085 (5)0.1941 (4)0.15176 (16)0.0196 (9)
H28A0.47540.25920.17070.023*
H28B0.53310.13450.17620.023*
C270.6498 (5)0.2230 (4)0.12352 (16)0.0213 (9)
H27A0.73320.24530.14840.026*
C10.3687 (4)0.2436 (4)0.38585 (16)0.0200 (9)
C260.7028 (5)0.1259 (4)0.09309 (17)0.0248 (10)
H26A0.73010.06380.11590.030*
H26B0.79430.14680.07520.030*
C70.6353 (5)0.1658 (4)0.37817 (18)0.0289 (11)
H7A0.71640.13710.35390.035*
C50.5715 (5)0.3100 (4)0.44299 (18)0.0292 (11)
H5A0.61090.37550.46100.035*
C100.4314 (5)0.3433 (4)0.41430 (18)0.0286 (11)
H10A0.35150.37210.43840.034*
H10B0.45960.40250.39000.034*
C220.3428 (5)0.2528 (4)0.07819 (18)0.0282 (11)
H22A0.30840.31670.09760.034*
H22B0.25920.23160.05380.034*
C250.5754 (5)0.0907 (4)0.05480 (18)0.0307 (11)
H25A0.60990.02640.03500.037*
C290.6129 (5)0.3197 (4)0.08773 (19)0.0307 (11)
H29A0.70440.34010.06980.037*
H29B0.58110.38430.10720.037*
C230.4837 (5)0.2858 (4)0.04936 (18)0.0313 (12)
H23A0.45780.34850.02620.038*
C240.5362 (6)0.1869 (5)0.01922 (18)0.0340 (12)
H24A0.62660.20730.00080.041*
H24B0.45450.16460.00570.041*
C40.5269 (6)0.2204 (5)0.48089 (19)0.0420 (14)
H4A0.61640.19850.49950.050*
H4B0.44790.24850.50550.050*
C20.3263 (5)0.1538 (4)0.42432 (19)0.0335 (12)
H2D0.24480.18090.44820.040*
H2E0.28740.08860.40680.040*
C90.5907 (6)0.0769 (4)0.4164 (2)0.0424 (14)
H9A0.55320.01120.39890.051*
H9B0.68040.05500.43500.051*
C30.4660 (6)0.1212 (5)0.4533 (2)0.0456 (15)
H3A0.43630.06260.47840.055*
H1C0.078 (5)0.107 (4)0.2492 (17)0.017 (11)*
H2C0.081 (7)0.496 (5)0.248 (2)0.043 (17)*
H1B0.029 (6)0.075 (5)0.211 (2)0.033 (15)*
H2B0.039 (7)0.482 (5)0.289 (2)0.057 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0184 (15)0.0165 (16)0.0354 (18)0.0006 (12)0.0083 (13)0.0024 (13)
O10.0180 (15)0.0158 (16)0.0380 (18)0.0019 (12)0.0085 (13)0.0016 (13)
N20.0170 (19)0.021 (2)0.032 (2)0.0003 (17)0.0049 (17)0.0027 (18)
N10.0172 (19)0.0143 (19)0.032 (2)0.0021 (16)0.0040 (17)0.0019 (17)
C310.016 (2)0.017 (2)0.028 (2)0.0029 (17)0.0001 (17)0.0032 (18)
C360.0102 (19)0.018 (2)0.024 (2)0.0028 (16)0.0021 (16)0.0008 (17)
C110.0104 (19)0.021 (2)0.026 (2)0.0003 (17)0.0028 (16)0.0023 (18)
C370.0107 (18)0.012 (2)0.027 (2)0.0021 (16)0.0017 (16)0.0017 (17)
C150.0091 (18)0.017 (2)0.027 (2)0.0040 (16)0.0053 (16)0.0003 (17)
C170.0119 (19)0.024 (2)0.027 (2)0.0005 (17)0.0023 (17)0.0032 (19)
C350.016 (2)0.014 (2)0.029 (2)0.0037 (17)0.0067 (17)0.0005 (18)
C160.015 (2)0.019 (2)0.025 (2)0.0030 (17)0.0017 (17)0.0002 (18)
C340.013 (2)0.019 (2)0.034 (3)0.0019 (17)0.0007 (18)0.0048 (19)
C140.0119 (19)0.018 (2)0.034 (3)0.0002 (17)0.0010 (17)0.0039 (19)
C130.013 (2)0.026 (2)0.026 (2)0.0018 (18)0.0001 (17)0.0014 (19)
C320.0097 (19)0.015 (2)0.027 (2)0.0025 (16)0.0037 (16)0.0008 (17)
C330.014 (2)0.021 (2)0.026 (2)0.0025 (17)0.0001 (17)0.0016 (18)
C210.016 (2)0.019 (2)0.022 (2)0.0009 (17)0.0018 (17)0.0020 (18)
C120.014 (2)0.021 (2)0.023 (2)0.0050 (17)0.0044 (17)0.0010 (18)
C300.023 (2)0.020 (2)0.031 (3)0.0003 (19)0.0063 (19)0.0067 (19)
C80.017 (2)0.022 (2)0.025 (2)0.0054 (18)0.0045 (18)0.0031 (18)
C60.013 (2)0.042 (3)0.030 (3)0.006 (2)0.0062 (18)0.000 (2)
C280.016 (2)0.022 (2)0.021 (2)0.0045 (17)0.0029 (17)0.0001 (18)
C270.019 (2)0.022 (2)0.024 (2)0.0066 (18)0.0048 (17)0.0020 (18)
C10.0121 (19)0.025 (2)0.023 (2)0.0019 (18)0.0014 (16)0.0013 (19)
C260.020 (2)0.023 (2)0.032 (3)0.0020 (18)0.0071 (18)0.001 (2)
C70.022 (2)0.032 (3)0.033 (3)0.010 (2)0.006 (2)0.005 (2)
C50.021 (2)0.036 (3)0.032 (3)0.005 (2)0.0091 (19)0.013 (2)
C100.018 (2)0.038 (3)0.030 (3)0.006 (2)0.0040 (19)0.010 (2)
C220.022 (2)0.034 (3)0.029 (2)0.006 (2)0.0035 (19)0.009 (2)
C250.030 (3)0.032 (3)0.031 (3)0.003 (2)0.008 (2)0.006 (2)
C290.031 (3)0.020 (2)0.043 (3)0.007 (2)0.018 (2)0.001 (2)
C230.031 (3)0.037 (3)0.027 (3)0.003 (2)0.010 (2)0.012 (2)
C240.030 (3)0.051 (3)0.021 (2)0.002 (2)0.007 (2)0.001 (2)
C40.024 (3)0.077 (4)0.025 (3)0.000 (3)0.006 (2)0.001 (3)
C20.028 (3)0.041 (3)0.032 (3)0.012 (2)0.007 (2)0.014 (2)
C90.041 (3)0.027 (3)0.062 (4)0.000 (2)0.030 (3)0.009 (3)
C30.036 (3)0.056 (4)0.046 (3)0.008 (3)0.012 (2)0.023 (3)
Geometric parameters (Å, °) top
O2—C311.440 (5)C8—H8B0.9900
O2—H2A0.8400C6—C51.530 (6)
O1—C111.422 (5)C6—C71.530 (7)
O1—H1A0.8400C6—H6A0.9900
N2—C351.411 (6)C6—H6B0.9900
N2—H2C0.88 (6)C28—C271.529 (6)
N2—H2B0.91 (7)C28—H28A0.9900
N1—C151.419 (5)C28—H28B0.9900
N1—H1C0.91 (5)C27—C261.519 (6)
N1—H1B0.83 (6)C27—C291.537 (6)
C31—C321.518 (6)C27—H27A1.0000
C31—C211.547 (6)C1—C21.529 (6)
C31—H31A1.0000C1—C101.547 (6)
C36—C371.384 (6)C26—C251.537 (6)
C36—C351.410 (6)C26—H26A0.9900
C36—H36A0.9500C26—H26B0.9900
C11—C121.514 (6)C7—C91.522 (7)
C11—C11.562 (6)C7—H7A1.0000
C11—H11A1.0000C5—C41.523 (8)
C37—C321.393 (6)C5—C101.540 (6)
C37—H37A0.9500C5—H5A1.0000
C15—C141.389 (6)C10—H10A0.9900
C15—C161.402 (6)C10—H10B0.9900
C17—C161.390 (6)C22—C231.546 (6)
C17—C121.398 (6)C22—H22A0.9900
C17—H17A0.9500C22—H22B0.9900
C35—C341.378 (6)C25—C241.533 (7)
C16—H16A0.9500C25—H25A1.0000
C34—C331.391 (6)C29—C231.544 (7)
C34—H34A0.9500C29—H29A0.9900
C14—C131.390 (6)C29—H29B0.9900
C14—H14A0.9500C23—C241.530 (7)
C13—C121.396 (6)C23—H23A1.0000
C13—H13A0.9500C24—H24A0.9900
C32—C331.391 (6)C24—H24B0.9900
C33—H33A0.9500C4—C31.524 (8)
C21—C221.536 (6)C4—H4A0.9900
C21—C301.545 (6)C4—H4B0.9900
C21—C281.549 (6)C2—C31.539 (7)
C30—C251.543 (6)C2—H2D0.9900
C30—H30A0.9900C2—H2E0.9900
C30—H30B0.9900C9—C31.533 (8)
C8—C11.532 (6)C9—H9A0.9900
C8—C71.548 (6)C9—H9B0.9900
C8—H8A0.9900C3—H3A1.0000
C31—O2—H2A109.5C28—C27—C29109.2 (4)
C11—O1—H1A109.5C26—C27—H27A109.1
C35—N2—H2C109 (4)C28—C27—H27A109.1
C35—N2—H2B115 (4)C29—C27—H27A109.1
H2C—N2—H2B112 (6)C2—C1—C8108.8 (4)
C15—N1—H1C114 (3)C2—C1—C10108.2 (4)
C15—N1—H1B114 (4)C8—C1—C10108.3 (3)
H1C—N1—H1B109 (5)C2—C1—C11110.0 (3)
O2—C31—C32111.0 (3)C8—C1—C11112.2 (3)
O2—C31—C21107.8 (3)C10—C1—C11109.1 (4)
C32—C31—C21115.5 (3)C27—C26—C25109.6 (4)
O2—C31—H31A107.4C27—C26—H26A109.8
C32—C31—H31A107.4C25—C26—H26A109.8
C21—C31—H31A107.4C27—C26—H26B109.8
C37—C36—C35119.9 (4)C25—C26—H26B109.8
C37—C36—H36A120.0H26A—C26—H26B108.2
C35—C36—H36A120.0C9—C7—C6109.4 (4)
O1—C11—C12110.5 (3)C9—C7—C8109.8 (4)
O1—C11—C1107.8 (3)C6—C7—C8108.9 (4)
C12—C11—C1114.4 (4)C9—C7—H7A109.6
O1—C11—H11A108.0C6—C7—H7A109.6
C12—C11—H11A108.0C8—C7—H7A109.6
C1—C11—H11A108.0C4—C5—C6109.4 (4)
C36—C37—C32121.5 (4)C4—C5—C10109.3 (4)
C36—C37—H37A119.3C6—C5—C10109.2 (4)
C32—C37—H37A119.3C4—C5—H5A109.6
C14—C15—C16118.7 (4)C6—C5—H5A109.6
C14—C15—N1122.0 (4)C10—C5—H5A109.6
C16—C15—N1119.2 (4)C5—C10—C1110.7 (4)
C16—C17—C12121.6 (4)C5—C10—H10A109.5
C16—C17—H17A119.2C1—C10—H10A109.5
C12—C17—H17A119.2C5—C10—H10B109.5
C34—C35—C36118.8 (4)C1—C10—H10B109.5
C34—C35—N2122.1 (4)H10A—C10—H10B108.1
C36—C35—N2119.0 (4)C21—C22—C23111.4 (4)
C17—C16—C15120.1 (4)C21—C22—H22A109.3
C17—C16—H16A119.9C23—C22—H22A109.3
C15—C16—H16A119.9C21—C22—H22B109.3
C35—C34—C33120.6 (4)C23—C22—H22B109.3
C35—C34—H34A119.7H22A—C22—H22B108.0
C33—C34—H34A119.7C24—C25—C26109.2 (4)
C15—C14—C13120.6 (4)C24—C25—C30109.9 (4)
C15—C14—H14A119.7C26—C25—C30108.9 (4)
C13—C14—H14A119.7C24—C25—H25A109.6
C14—C13—C12121.5 (4)C26—C25—H25A109.6
C14—C13—H13A119.2C30—C25—H25A109.6
C12—C13—H13A119.2C27—C29—C23109.2 (4)
C33—C32—C37117.8 (4)C27—C29—H29A109.8
C33—C32—C31121.0 (4)C23—C29—H29A109.8
C37—C32—C31121.1 (4)C27—C29—H29B109.8
C32—C33—C34121.3 (4)C23—C29—H29B109.8
C32—C33—H33A119.4H29A—C29—H29B108.3
C34—C33—H33A119.4C24—C23—C29108.9 (4)
C22—C21—C30108.6 (4)C24—C23—C22109.2 (4)
C22—C21—C31110.0 (3)C29—C23—C22108.9 (4)
C30—C21—C31109.4 (3)C24—C23—H23A109.9
C22—C21—C28107.2 (4)C29—C23—H23A109.9
C30—C21—C28108.9 (3)C22—C23—H23A109.9
C31—C21—C28112.6 (3)C23—C24—C25109.9 (4)
C13—C12—C17117.4 (4)C23—C24—H24A109.7
C13—C12—C11121.2 (4)C25—C24—H24A109.7
C17—C12—C11121.4 (4)C23—C24—H24B109.7
C25—C30—C21110.6 (4)C25—C24—H24B109.7
C25—C30—H30A109.5H24A—C24—H24B108.2
C21—C30—H30A109.5C5—C4—C3109.5 (4)
C25—C30—H30B109.5C5—C4—H4A109.8
C21—C30—H30B109.5C3—C4—H4A109.8
H30A—C30—H30B108.1C5—C4—H4B109.8
C1—C8—C7110.5 (4)C3—C4—H4B109.8
C1—C8—H8A109.6H4A—C4—H4B108.2
C7—C8—H8A109.6C1—C2—C3110.2 (4)
C1—C8—H8B109.6C1—C2—H2D109.6
C7—C8—H8B109.6C3—C2—H2D109.6
H8A—C8—H8B108.1C1—C2—H2E109.6
C5—C6—C7109.8 (4)C3—C2—H2E109.6
C5—C6—H6A109.7H2D—C2—H2E108.1
C7—C6—H6A109.7C7—C9—C3109.3 (4)
C5—C6—H6B109.7C7—C9—H9A109.8
C7—C6—H6B109.7C3—C9—H9A109.8
H6A—C6—H6B108.2C7—C9—H9B109.8
C27—C28—C21110.2 (3)C3—C9—H9B109.8
C27—C28—H28A109.6H9A—C9—H9B108.3
C21—C28—H28A109.6C4—C3—C9109.1 (4)
C27—C28—H28B109.6C4—C3—C2110.4 (5)
C21—C28—H28B109.6C9—C3—C2109.5 (4)
H28A—C28—H28B108.1C4—C3—H3A109.2
C26—C27—C28111.4 (4)C9—C3—H3A109.2
C26—C27—C29109.0 (4)C2—C3—H3A109.2
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.842.062.890 (5)168
O1—H1A···N20.842.042.876 (5)171
N1—H1B···O1i0.83 (6)2.15 (6)2.941 (5)162 (5)
N2—H2B···O2ii0.91 (7)2.05 (7)2.932 (5)163 (6)
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.842.062.890 (5)168
O1—H1A···N20.842.042.876 (5)171
N1—H1B···O1i0.83 (6)2.15 (6)2.941 (5)162 (5)
N2—H2B···O2ii0.91 (7)2.05 (7)2.932 (5)163 (6)
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.
Acknowledgements top

The financial support of this work by the Science Foundation of Czech Republic (grant No. 203/06/P362) and by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

references
References top

Adkins, H. & Billica, H. R. (1948). J. Am. Chem. Soc. 70, 695–698.

Bommel, K. J. C. van, Metselaar, G. A., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 5405–5412.

Cromwell, W. C., Bystrom, K. & Eftink, M. R. (1985). J. Phys. Chem. 89, 326–332.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.