organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1121

1H-Pyrrole-2-carboxylic acid

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 27 March 2009; accepted 15 April 2009; online 25 April 2009)

In the title compound, C5H5NO2, the pyrrole ring and its carboxyl substituent are close to coplanar, with a dihedral angle of 11.7 (3)° between the planes. In the crystal structure, adjacent mol­ecules are linked by pairs of O—H⋯O hydrogen bonds to form inversion dimers. Additional N—H⋯O hydrogen bonds link these dimers into chains extending along the a axis.

Related literature

For pyrroles sourced from marine organisms, see: Faulkner (2002[Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.]). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]); Sosa et al. (2002[Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.]). For related structures, see: Zeng (2006[Zeng, X.-C. (2006). Acta Cryst. E62, o5505-o5507.]); Zeng et al. (2007[Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5NO2

  • Mr = 111.10

  • Monoclinic, C 2/c

  • a = 14.080 (3) Å

  • b = 5.0364 (10) Å

  • c = 14.613 (3) Å

  • β = 98.969 (3)°

  • V = 1023.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.42 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.959

  • 2277 measured reflections

  • 1006 independent reflections

  • 875 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.191

  • S = 1.06

  • 1006 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.22 2.951 (3) 141
O2—H2A⋯O1ii 0.84 2.16 2.986 (3) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker,1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason they have attracted our interest. This study is related to our previous structural investigations of methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate (Zeng et al., 2007) and 3-bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine- 4,8(1H,5H)-dione (Zeng, 2006). In the crystal structure, molecules of the title compound are linked through N1—H1···O1i hydrogen bonds to form centrosymmetric dimers (Fig. 2) of graph-set motif R22(10) (Bernstein et al., 1995), which are linked by O2—H2···O1ii hydrogen bonds (another kind of centrosymmetric dimers of graph-set motif R22(8) are formed), generating chains extending to the a axis (also shown in Fig. 2).

Related literature top

For pyrroles sourced from marine organisms, see: Faulkner (2002). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006); Sosa et al. (2002). For related structures, see: Zeng (2006); Zeng et al. (2007). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The commercially available 1H-pyrrole-2-carboxylic acid was dissolved in the mixture of EtOH (80%) and ethyl acetate (20%). Colorless monoclinic crystals suitable for X-ray analysis were obtained when the solution was exposed to the air at room temperature for about 5 d.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically [C—H = 0.95Å for CH, O—H = 0.84Å for OH, and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom. In the final difference Fourier map the highest peak (0.74 eÅ-3) is 1.01Å from O2 and the deepest hole (-0.73 eÅ-3) is 0.61Å from O2.

Computing details top

Data collection: SMART (Bruker,1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) showing the chains formed by hydrogen bonds (dashed lines).
1H-Pyrrole-2-carboxylic acid top
Crystal data top
C5H5NO2F(000) = 464
Mr = 111.10Dx = 1.442 Mg m3
Monoclinic, C2/cMelting point: 480 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.080 (3) ÅCell parameters from 1751 reflections
b = 5.0364 (10) Åθ = 2.8–27.0°
c = 14.613 (3) ŵ = 0.11 mm1
β = 98.969 (3)°T = 173 K
V = 1023.6 (3) Å3Block, colorless
Z = 80.42 × 0.40 × 0.37 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1006 independent reflections
Radiation source: fine-focus sealed tube875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1713
Tmin = 0.954, Tmax = 0.959k = 66
2277 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1108P)2 + 3.3345P]
where P = (Fo2 + 2Fc2)/3
1006 reflections(Δ/σ)max = 0.001
74 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C5H5NO2V = 1023.6 (3) Å3
Mr = 111.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.080 (3) ŵ = 0.11 mm1
b = 5.0364 (10) ÅT = 173 K
c = 14.613 (3) Å0.42 × 0.40 × 0.37 mm
β = 98.969 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1006 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
875 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.959Rint = 0.015
2277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.06Δρmax = 0.74 e Å3
1006 reflectionsΔρmin = 0.73 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12435 (12)1.1503 (3)0.53422 (12)0.0223 (5)
C40.23786 (16)0.8483 (5)0.61313 (15)0.0176 (6)
O20.07382 (14)0.7350 (4)0.56343 (15)0.0373 (6)
H2A0.02200.79230.53360.056*
N10.31542 (14)1.0100 (4)0.61094 (15)0.0216 (6)
H1A0.31441.16140.58080.026*
C30.26837 (17)0.6325 (5)0.66849 (17)0.0208 (6)
H30.22990.48790.68280.025*
C50.14189 (16)0.9228 (5)0.56657 (15)0.0173 (6)
C20.36767 (18)0.6681 (5)0.69974 (17)0.0245 (6)
H20.40850.55210.73930.029*
C10.39405 (17)0.9010 (6)0.66242 (18)0.0251 (6)
H10.45700.97400.67120.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (9)0.0190 (10)0.0273 (10)0.0004 (7)0.0008 (7)0.0048 (7)
C40.0184 (12)0.0182 (12)0.0167 (11)0.0004 (9)0.0039 (9)0.0005 (9)
O20.0298 (11)0.0331 (12)0.0472 (13)0.0029 (9)0.0002 (10)0.0044 (10)
N10.0191 (10)0.0196 (11)0.0253 (11)0.0027 (8)0.0013 (8)0.0062 (8)
C30.0210 (12)0.0198 (12)0.0216 (12)0.0003 (9)0.0035 (9)0.0020 (9)
C50.0192 (12)0.0164 (11)0.0167 (11)0.0002 (9)0.0042 (9)0.0008 (9)
C20.0220 (13)0.0291 (14)0.0215 (12)0.0052 (10)0.0009 (9)0.0038 (10)
C10.0174 (12)0.0318 (14)0.0256 (13)0.0013 (10)0.0019 (9)0.0030 (11)
Geometric parameters (Å, º) top
O1—C51.250 (3)N1—H1A0.8800
C4—N11.367 (3)C3—C21.413 (3)
C4—C31.383 (3)C3—H30.9500
C4—C51.464 (3)C2—C11.369 (4)
O2—C51.342 (3)C2—H20.9500
O2—H2A0.8400C1—H10.9500
N1—C11.354 (3)
N1—C4—C3107.8 (2)O1—C5—O2122.4 (2)
N1—C4—C5121.3 (2)O1—C5—C4121.6 (2)
C3—C4—C5130.8 (2)O2—C5—C4116.0 (2)
C5—O2—H2A109.5C1—C2—C3107.2 (2)
C1—N1—C4109.4 (2)C1—C2—H2126.4
C1—N1—H1A125.3C3—C2—H2126.4
C4—N1—H1A125.3N1—C1—C2108.6 (2)
C4—C3—C2106.9 (2)N1—C1—H1125.7
C4—C3—H3126.5C2—C1—H1125.7
C2—C3—H3126.5
C3—C4—N1—C10.7 (3)N1—C4—C5—O2171.9 (2)
C5—C4—N1—C1177.3 (2)C3—C4—C5—O212.3 (4)
N1—C4—C3—C20.2 (3)C4—C3—C2—C10.3 (3)
C5—C4—C3—C2176.4 (2)C4—N1—C1—C20.9 (3)
N1—C4—C5—O110.0 (3)C3—C2—C1—N10.7 (3)
C3—C4—C5—O1165.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.222.951 (3)141
O2—H2A···O1ii0.842.162.986 (3)166
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC5H5NO2
Mr111.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.080 (3), 5.0364 (10), 14.613 (3)
β (°) 98.969 (3)
V3)1023.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.40 × 0.37
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
2277, 1006, 875
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 1.06
No. of reflections1006
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.73

Computer programs: SMART (Bruker,1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.222.951 (3)140.6
O2—H2A···O1ii0.842.162.986 (3)166.4
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (grant No. 06300581), for generously supporting this study.

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaulkner, D. J. (2002). Nat. Prod. Rep. 18, 1–48.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498–4500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, X.-C. (2006). Acta Cryst. E62, o5505–o5507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1121
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds