organic compounds
[1-(1-Adamantylamino)ethylidene]oxonium methanesulfonate
aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz
In the title salt, C12H20NO+·CH3SO3−, the [1-(1-adamantylamino)ethylidene]oxonium cations and methanesulfonate anions are linked into chains along the a axis via O—H⋯O and N—H⋯O hydrogen bonds. All non-H atoms of the acetamido group are essentially planar, with a maximum deviation of 0.0085 (12) Å. In comparison with related structures, the carbonyl C=O bond is slightly elongated [1.249 (2) Å], whereas the amide C—N bond is shortened [1.292 (2) Å].
Related literature
For previously published structures of N-(1-adamantyl)acetamide, see: Pröhl et al. (1997); Kashino et al. (1998); Mizoguchi et al. (1997). For the preparation of N-(1-adamantyl)acetamide, see: Bach et al. (1979, 1980); Gerzon et al. (1963); Stetter et al. (1959, 1960). For the biological activity of related adamantane derivatives, see: Davies et al. (1964); Aldrich et al. (1971).
Experimental
Crystal data
|
Refinement
|
Data collection: Xcalibur (Oxford Diffraction, 2006); cell Xcalibur (Oxford Diffraction, 2006); data reduction: Xcalibur (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809017632/pk2161sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017632/pk2161Isup2.hkl
1-Adamantyl methansulfonate (500 mg, 2.17 mmol) was stirred in 20 ml of dry acetonitrile at room temperature for 1 h. After this period, the solution was allowed to stand at room temperature for several days and growth of crystals was observed. The solid was filtered off with suction and mother liquor was evaporated to obtain a second crop of title compound as a colourless powder. The combined yield of the title salt was 583 mg (93%). 1H NMR spectra were similar to those obtained for equimolar mixture of separately prepared N-(1-adamantyl)acetamide and methanesulfonic acid.
H atoms were found in difference Fourier maps. Those attached to N and O were refined while those attached to C were placed in idealized positions with constrained distances of 0.98 Å (RCH3) and 0.99 Å (R2CH2). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.
Data collection: Xcalibur (Oxford Diffraction, 2006); cell
Xcalibur (Oxford Diffraction, 2006); data reduction: Xcalibur (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H20NO+·CH3SO3− | Dx = 1.383 Mg m−3 |
Mr = 289.38 | Melting point: 445 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2454 reflections |
a = 12.9848 (7) Å | θ = 3.1–25.0° |
b = 11.2625 (6) Å | µ = 0.24 mm−1 |
c = 19.0037 (10) Å | T = 120 K |
V = 2779.1 (3) Å3 | Block, colourless |
Z = 8 | 0.40 × 0.40 × 0.35 mm |
F(000) = 1248 |
Kuma KM-4 CCD diffractometer | 2454 independent reflections |
Radiation source: fine-focus sealed tube | 2000 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 0.06 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −15→14 |
Absorption correction: multi-scan (Xcalibur; Oxford Diffraction, 2006) | k = −13→13 |
Tmin = 0.824, Tmax = 0.914 | l = −21→22 |
19453 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.054P)2 + 1.529P] where P = (Fo2 + 2Fc2)/3 |
2454 reflections | (Δ/σ)max = 0.001 |
180 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C12H20NO+·CH3SO3− | V = 2779.1 (3) Å3 |
Mr = 289.38 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.9848 (7) Å | µ = 0.24 mm−1 |
b = 11.2625 (6) Å | T = 120 K |
c = 19.0037 (10) Å | 0.40 × 0.40 × 0.35 mm |
Kuma KM-4 CCD diffractometer | 2454 independent reflections |
Absorption correction: multi-scan (Xcalibur; Oxford Diffraction, 2006) | 2000 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 0.914 | Rint = 0.017 |
19453 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.30 e Å−3 |
2454 reflections | Δρmin = −0.47 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.09044 (13) | 0.28700 (14) | 0.34406 (9) | 0.0181 (4) | |
C2 | −0.00380 (13) | 0.22857 (15) | 0.30176 (9) | 0.0195 (4) | |
H2A | 0.0621 | 0.2698 | 0.3111 | 0.023* | |
H2B | 0.0038 | 0.1445 | 0.3162 | 0.023* | |
C3 | −0.10319 (14) | 0.41701 (15) | 0.32215 (9) | 0.0201 (4) | |
H3A | −0.1594 | 0.4541 | 0.3496 | 0.024* | |
H3B | −0.0388 | 0.4613 | 0.3317 | 0.024* | |
C4 | −0.19133 (14) | 0.22087 (16) | 0.33012 (9) | 0.0229 (4) | |
H4A | −0.1846 | 0.1370 | 0.3451 | 0.027* | |
H4B | −0.2477 | 0.2576 | 0.3576 | 0.027* | |
C5 | −0.21663 (15) | 0.22635 (17) | 0.25177 (10) | 0.0251 (4) | |
H5 | −0.2824 | 0.1828 | 0.2427 | 0.030* | |
C6 | −0.13002 (15) | 0.16913 (16) | 0.20928 (10) | 0.0262 (4) | |
H6A | −0.1467 | 0.1724 | 0.1585 | 0.031* | |
H6B | −0.1225 | 0.0847 | 0.2230 | 0.031* | |
C7 | −0.02922 (14) | 0.23530 (16) | 0.22322 (10) | 0.0225 (4) | |
H7 | 0.0276 | 0.1979 | 0.1954 | 0.027* | |
C8 | −0.04113 (14) | 0.36523 (15) | 0.20149 (9) | 0.0224 (4) | |
H8A | −0.0567 | 0.3702 | 0.1506 | 0.027* | |
H8B | 0.0240 | 0.4084 | 0.2103 | 0.027* | |
C9 | −0.12838 (13) | 0.42199 (15) | 0.24371 (9) | 0.0213 (4) | |
H9 | −0.1362 | 0.5068 | 0.2291 | 0.026* | |
C10 | −0.22900 (14) | 0.35595 (17) | 0.22953 (10) | 0.0256 (4) | |
H10A | −0.2461 | 0.3603 | 0.1788 | 0.031* | |
H10B | −0.2858 | 0.3932 | 0.2564 | 0.031* | |
C11 | 0.00322 (13) | 0.32640 (15) | 0.45588 (9) | 0.0211 (4) | |
C12 | 0.01287 (15) | 0.30548 (18) | 0.53284 (10) | 0.0271 (4) | |
H12A | 0.0762 | 0.2609 | 0.5424 | 0.041* | |
H12B | −0.0467 | 0.2599 | 0.5495 | 0.041* | |
H12C | 0.0155 | 0.3819 | 0.5575 | 0.041* | |
N1 | −0.06903 (11) | 0.27539 (13) | 0.42026 (8) | 0.0195 (3) | |
H1 | −0.1102 (15) | 0.2308 (18) | 0.4446 (11) | 0.023* | |
O1 | 0.06855 (10) | 0.39456 (12) | 0.42407 (6) | 0.0268 (3) | |
H2 | 0.1158 (17) | 0.436 (2) | 0.4560 (12) | 0.040* | |
S1 | 0.29158 (4) | 0.49446 (4) | 0.50332 (2) | 0.02087 (16) | |
O2 | 0.17962 (12) | 0.51334 (12) | 0.50208 (7) | 0.0302 (3) | |
O3 | 0.31512 (12) | 0.37147 (12) | 0.48779 (7) | 0.0342 (4) | |
O4 | 0.33796 (11) | 0.54034 (13) | 0.56618 (7) | 0.0357 (4) | |
C13 | 0.33885 (17) | 0.57840 (19) | 0.43323 (10) | 0.0356 (5) | |
H13A | 0.3191 | 0.6617 | 0.4396 | 0.053* | |
H13B | 0.3099 | 0.5485 | 0.3890 | 0.053* | |
H13C | 0.4141 | 0.5721 | 0.4318 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (9) | 0.0183 (8) | 0.0179 (9) | 0.0002 (7) | 0.0006 (7) | 0.0014 (7) |
C2 | 0.0182 (9) | 0.0204 (9) | 0.0201 (9) | 0.0034 (7) | −0.0005 (7) | −0.0017 (7) |
C3 | 0.0235 (9) | 0.0163 (8) | 0.0206 (9) | 0.0009 (7) | 0.0028 (7) | −0.0011 (7) |
C4 | 0.0213 (9) | 0.0212 (9) | 0.0261 (10) | −0.0034 (7) | −0.0001 (7) | 0.0048 (7) |
C5 | 0.0213 (9) | 0.0250 (10) | 0.0289 (10) | −0.0074 (8) | −0.0056 (7) | 0.0029 (8) |
C6 | 0.0341 (11) | 0.0185 (9) | 0.0259 (10) | −0.0019 (8) | −0.0061 (8) | −0.0019 (7) |
C7 | 0.0250 (9) | 0.0230 (9) | 0.0195 (9) | 0.0043 (8) | −0.0002 (7) | −0.0037 (7) |
C8 | 0.0238 (9) | 0.0260 (9) | 0.0176 (9) | −0.0027 (8) | −0.0004 (7) | 0.0002 (7) |
C9 | 0.0254 (9) | 0.0150 (8) | 0.0236 (9) | 0.0005 (7) | −0.0008 (7) | 0.0027 (7) |
C10 | 0.0209 (9) | 0.0281 (10) | 0.0277 (10) | 0.0022 (8) | −0.0044 (8) | 0.0042 (8) |
C11 | 0.0207 (9) | 0.0209 (9) | 0.0216 (9) | 0.0041 (7) | 0.0029 (7) | −0.0015 (7) |
C12 | 0.0311 (11) | 0.0299 (10) | 0.0202 (10) | 0.0010 (8) | −0.0021 (8) | 0.0001 (8) |
N1 | 0.0214 (8) | 0.0187 (7) | 0.0183 (8) | −0.0001 (6) | 0.0022 (6) | 0.0015 (6) |
O1 | 0.0257 (7) | 0.0330 (7) | 0.0216 (7) | −0.0080 (6) | −0.0009 (5) | −0.0008 (6) |
S1 | 0.0221 (3) | 0.0229 (3) | 0.0175 (3) | −0.00163 (17) | −0.00125 (16) | 0.00108 (17) |
O2 | 0.0240 (7) | 0.0328 (8) | 0.0337 (8) | −0.0003 (6) | 0.0006 (5) | −0.0114 (6) |
O3 | 0.0433 (9) | 0.0270 (8) | 0.0323 (8) | 0.0092 (6) | −0.0058 (6) | 0.0028 (6) |
O4 | 0.0406 (8) | 0.0440 (8) | 0.0226 (7) | −0.0109 (7) | −0.0093 (6) | 0.0014 (6) |
C13 | 0.0489 (13) | 0.0353 (11) | 0.0227 (10) | −0.0117 (10) | 0.0030 (9) | 0.0021 (8) |
C1—N1 | 1.480 (2) | C8—H8A | 0.9900 |
C1—C4 | 1.530 (2) | C8—H8B | 0.9900 |
C1—C3 | 1.531 (2) | C9—C10 | 1.527 (2) |
C1—C2 | 1.531 (2) | C9—H9 | 1.0000 |
C2—C7 | 1.530 (3) | C10—H10A | 0.9900 |
C2—H2A | 0.9900 | C10—H10B | 0.9900 |
C2—H2B | 0.9900 | C11—N1 | 1.292 (2) |
C3—C9 | 1.527 (2) | C11—O1 | 1.294 (2) |
C3—H3A | 0.9900 | C11—C12 | 1.487 (3) |
C3—H3B | 0.9900 | C12—H12A | 0.9800 |
C4—C5 | 1.526 (3) | C12—H12B | 0.9800 |
C4—H4A | 0.9900 | C12—H12C | 0.9800 |
C4—H4B | 0.9900 | N1—H1 | 0.87 (2) |
C5—C6 | 1.527 (3) | O1—H2 | 0.98 (2) |
C5—C10 | 1.528 (2) | S1—O4 | 1.4343 (14) |
C5—H5 | 1.0000 | S1—O3 | 1.4489 (14) |
C6—C7 | 1.529 (3) | S1—O2 | 1.4695 (15) |
C6—H6A | 0.9900 | S1—C13 | 1.7448 (19) |
C6—H6B | 0.9900 | C13—H13A | 0.9800 |
C7—C8 | 1.528 (2) | C13—H13B | 0.9800 |
C7—H7 | 1.0000 | C13—H13C | 0.9800 |
C8—C9 | 1.528 (2) | ||
N1—C1—C4 | 106.69 (13) | C7—C8—H8A | 109.8 |
N1—C1—C3 | 111.76 (14) | C9—C8—H8A | 109.8 |
C4—C1—C3 | 109.01 (14) | C7—C8—H8B | 109.8 |
N1—C1—C2 | 109.73 (14) | C9—C8—H8B | 109.8 |
C4—C1—C2 | 109.20 (14) | H8A—C8—H8B | 108.2 |
C3—C1—C2 | 110.34 (14) | C3—C9—C10 | 109.73 (14) |
C7—C2—C1 | 109.40 (14) | C3—C9—C8 | 109.77 (14) |
C7—C2—H2A | 109.8 | C10—C9—C8 | 109.74 (14) |
C1—C2—H2A | 109.8 | C3—C9—H9 | 109.2 |
C7—C2—H2B | 109.8 | C10—C9—H9 | 109.2 |
C1—C2—H2B | 109.8 | C8—C9—H9 | 109.2 |
H2A—C2—H2B | 108.2 | C9—C10—C5 | 109.05 (14) |
C9—C3—C1 | 108.89 (14) | C9—C10—H10A | 109.9 |
C9—C3—H3A | 109.9 | C5—C10—H10A | 109.9 |
C1—C3—H3A | 109.9 | C9—C10—H10B | 109.9 |
C9—C3—H3B | 109.9 | C5—C10—H10B | 109.9 |
C1—C3—H3B | 109.9 | H10A—C10—H10B | 108.3 |
H3A—C3—H3B | 108.3 | N1—C11—O1 | 119.67 (16) |
C5—C4—C1 | 109.48 (14) | N1—C11—C12 | 120.42 (16) |
C5—C4—H4A | 109.8 | O1—C11—C12 | 119.90 (16) |
C1—C4—H4A | 109.8 | C11—C12—H12A | 109.5 |
C5—C4—H4B | 109.8 | C11—C12—H12B | 109.5 |
C1—C4—H4B | 109.8 | H12A—C12—H12B | 109.5 |
H4A—C4—H4B | 108.2 | C11—C12—H12C | 109.5 |
C4—C5—C6 | 109.89 (15) | H12A—C12—H12C | 109.5 |
C4—C5—C10 | 109.34 (15) | H12B—C12—H12C | 109.5 |
C6—C5—C10 | 109.53 (15) | C11—N1—C1 | 127.58 (15) |
C4—C5—H5 | 109.4 | C11—N1—H1 | 115.2 (14) |
C6—C5—H5 | 109.4 | C1—N1—H1 | 117.2 (14) |
C10—C5—H5 | 109.4 | C11—O1—H2 | 113.8 (13) |
C5—C6—C7 | 109.45 (14) | O4—S1—O3 | 115.18 (9) |
C5—C6—H6A | 109.8 | O4—S1—O2 | 112.12 (8) |
C7—C6—H6A | 109.8 | O3—S1—O2 | 110.11 (8) |
C5—C6—H6B | 109.8 | O4—S1—C13 | 107.03 (9) |
C7—C6—H6B | 109.8 | O3—S1—C13 | 106.76 (9) |
H6A—C6—H6B | 108.2 | O2—S1—C13 | 104.92 (10) |
C8—C7—C6 | 109.47 (15) | S1—C13—H13A | 109.5 |
C8—C7—C2 | 109.44 (14) | S1—C13—H13B | 109.5 |
C6—C7—C2 | 109.23 (15) | H13A—C13—H13B | 109.5 |
C8—C7—H7 | 109.6 | S1—C13—H13C | 109.5 |
C6—C7—H7 | 109.6 | H13A—C13—H13C | 109.5 |
C2—C7—H7 | 109.6 | H13B—C13—H13C | 109.5 |
C7—C8—C9 | 109.49 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.87 (2) | 1.98 (2) | 2.838 (2) | 170.1 (19) |
O1—H2···O2 | 0.98 (2) | 1.49 (2) | 2.4632 (18) | 173 (2) |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H20NO+·CH3SO3− |
Mr | 289.38 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 12.9848 (7), 11.2625 (6), 19.0037 (10) |
V (Å3) | 2779.1 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.40 × 0.40 × 0.35 |
Data collection | |
Diffractometer | Kuma KM-4 CCD diffractometer |
Absorption correction | Multi-scan (Xcalibur; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.824, 0.914 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19453, 2454, 2000 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.102, 1.09 |
No. of reflections | 2454 |
No. of parameters | 180 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.47 |
Computer programs: Xcalibur (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.87 (2) | 1.98 (2) | 2.838 (2) | 170.1 (19) |
O1—H2···O2 | 0.98 (2) | 1.49 (2) | 2.4632 (18) | 173 (2) |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Acknowledgements
The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.
References
Aldrich, P. E., Hermann, E. C., Meier, E. E., Paulshock, M., Richard, W. W., Snyder, J. A. & Watts, J. C. (1971). J. Med. Chem. 14, 535–543. CrossRef CAS PubMed Web of Science Google Scholar
Bach, R. D., Holubka, J. W. & Taaffee, T. A. (1979). J. Org. Chem. 44, 1739–1740. CrossRef CAS Web of Science Google Scholar
Bach, R. D., Taaffee, T. A. & Rajan, S. J. (1980). J. Org. Chem. 45, 165–167. CrossRef CAS Web of Science Google Scholar
Davies, W. L., Grubery, R. R., Haff, R. F., McGahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. CrossRef PubMed CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gerzon, K., Krumalns, E. V., Brindle, R. L., Marshall, F. J. & Root, M. A. (1963). J. Med. Chem. 6, 760–763. CrossRef PubMed CAS Web of Science Google Scholar
Kashino, S., Tateno, S., Hamada, N. & Haisa, M. (1998). Acta Cryst. C54, 273–274. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mizoguchi, J., Takayuki, M. & Kashino, S. (1997). Acta Cryst. C53 IUC9700024. Google Scholar
Oxford Diffraction (2006). Xcalibur CCD System. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pröhl, H.-H., Blaschette, A. & Jones, P. G. (1997). Acta Cryst. C53, 1434–1436. CSD CrossRef Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stetter, H., Mayer, J., Schwarz, M. & Wulff, K. (1960). Chem. Ber. 93, 226–230. CrossRef CAS Web of Science Google Scholar
Stetter, H., Schwarz, M. & Hirschhorn, A. (1959). Chem. Ber. 92, 1629–1635. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since 1964, 1-aminoadamantane and related compounds have seen extensive examination due to their antiviral activity (Davies et al., 1964; Aldrich et al., 1971). The consecution of adamantane bromination, reaction with acetonitrile and final hydrolysis of N-(1-adamantyl)acetamide provides a viable synthetic method for 1-aminoadamantane production. The synthesis of N-(1-adamantyl)acetamide via nucleophilic substitution from varied bridgehead-substituted derivatives was previously described. For this purpose 1-iodoadamantane (Bach et al., 1980), 1-bromoadamantane (Stetter et al., 1960), 1-chloroadamantane (Gerzon et al., 1963), 1-alkoxyadamantane (Bach et al., 1979; Bach et al., 1980) or adamantan-1-ol (Stetter et al., 1959) were used as starting material. The title salt was prepared by replacement of a good-leaving group in 1-adamantyl methanesulfonate with acetonitrile.
In the structure of title salt (Fig. 1), the O-protonated N-(1-adamantyl)acetamide and methansulfonate are linked alternately into chains parallel to the a axis via O1–H2···O2 and N1–H1···O3 hydrogen bonds (Table 1, Fig. 2). All non-hydrogen atoms of the acetamido group (C11, C12, N1, O1) and C1 lie in plane with the maximum deviation from the best plane being 0.0085 (12) Å for atom N1. The distance of the H1 and H2 from the best plane (C1, C11, C12, N1, O1) is 0.004 (19) and 0.11 (2) Å respectively. In comparison with previously published structures of N-(1-adamantyl)acetamide (Pröhl et al., 1997; Kashino et al., 1998 and Mizoguchi et al. , 1997), the length of N1–C11 is slightly shorter, being 1.292 (2) Å [published 1.323 (5)–1.345 (2) Å] and C11–O1 is slightly longer at 1.294 (2) Å [published 1.230 (5)–1.237 (4) Å]. This may be attributed to enhanced electron withdrawing effect of the protonated O1.