organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Decane-1,10-diyldi­oxy­di­nitrilo)di­ethyl­­idyne]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 8 July 2009; accepted 23 July 2009; online 29 July 2009)

The salen-type bis-oxime title compound, C26H36N2O4, lies about a crystallographic inversion centre. Classical intra­molecular O—H⋯N hydrogen bonds generate two S(6) ring motifs. In the crystal structure, pairs of weak inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into an infinite one-dimensional supra­molecular structure.

Related literature

For the strong coordination capability and diverse biological activity of Schiff bases, see: Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For the use of Schiff base derivatives to develop protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For our studies of synthesis and structure of salen-type bis­oxime compounds obtained by Schiff base reactions, see: Dong et al. (2008a[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600-o1601.],b[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405.], 2009[Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009). Inorg. Chem. Commun. 12, 234-236.]). For hydrogen bonds, see: Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N2O4

  • Mr = 440.57

  • Monoclinic, C 2/c

  • a = 13.0031 (16) Å

  • b = 4.6922 (6) Å

  • c = 40.654 (3) Å

  • β = 93.109 (2)°

  • V = 2476.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.23 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.982

  • 5830 measured reflections

  • 2124 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.260

  • S = 1.03

  • 2124 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.85 2.568 (5) 146
C13—H13⋯O2i 0.93 2.66 3.565 (6) 163
Symmetry code: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry and have been intensively studied due to their strong coordination capability as well as their diverse biological activities, such as antibacterial, antitumor, etc. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). In addition, many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Our group is interested in the synthesis and structure of salen-type bisoxime compounds by Schiff base reaction (Dong et al., 2008a; Dong et al., 2008b). Here, we report, for the first time, the synthesis and crystal structure of a salen-type bisoxime compound containing ten-methene bridge, 2,2'-[1,1'-(decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol.

Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. Each molecule exists in a trans configuration with respect to the methylidene unit. The two phenyl rings in each molecule are parallel to each other, with C1—O1—N1—C7 torsion angles of 178.7 (3)° and a perpendicular interplanar spacing of ca 6.695 (2) Å. In each title compound, there exist two classical intramolecular O—H···N hydrogen bonds (Fig. 1) which generate two six-membered rings, producing two S(6) ring motifs. In the crystal structure, pairs of weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2)(Desiraju, 1996) link the adjacent molecules into an infinite one-dimensional supramolecular structure (Fig. 2).

Related literature top

For the strong coordination capability and diverse biological activities of Schiff bases, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For the use of Schiff base derivatives to develop protein and enzyme mimics, see: Santos et al. (2001). For our studies of synthesis and structure of salen-type bisoxime compounds obtained by Schiff base reaction, see: Dong et al. (2008a,b, 2009). For hydrogen bonds, see: Desiraju (1996).

Experimental top

2,2'-[1,1'-(Decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol was synthesized according to the literature (Dong, et al., 2009). To an absolute ethanol solution (4 ml) of 2'-hydroxyacetophenone (375.8 mg, 2.76 mmol) was added an absolute ethanol solution (4 ml) of 1, 10-bis(aminooxy)decane (180.9 mg, 1.38 mmol). The mixture solution was stirred at 328–333 K for 48 h. When cool to room temperature (298 K), white precipitate was formed which was filtered and washed successively with absolute ethanol (2 ml) and n-hexane (8 ml), respectively. The product was dried under vacuum and purified by recrystallization from ethanol to yield 331.9 mg of the title compound. Yield, 52.75%. m. p. 343–344 K. Anal. Calcd. for C26H36N2O4: C, 70.88; H, 8.24; N, 6.36. Found: C, 70.59; H, 8.23; N, 6.57.

Colorless block-like single crystals suitable for X-ray diffraction studies were obtained after several days by slow evaporation from a diethyl ether solution of the title compound.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), 0.82 Å (OH), andUiso(H) = 1.20 Ueq(C) for methylene and methylidyne, 1.50 Ueq(C) for methyl, 1.50 Ueq(O). The crystal quality was not good enough to provide data completeness to 1.0, which is also reflected in the weighted R.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x + 1/2,-y + 3/2,-z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the one-dimensional supramolecular structure of the title compound. Intramolecular and intermolecular hydrogen bonds of the title compound are shown as dashed lines.
2,2'-[1,1'-(Decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol top
Crystal data top
C26H36N2O4F(000) = 952
Mr = 440.57Dx = 1.181 Mg m3
Monoclinic, C2/cMelting point = 343–344 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.0031 (16) ÅCell parameters from 1361 reflections
b = 4.6922 (6) Åθ = 2.5–26.9°
c = 40.654 (3) ŵ = 0.08 mm1
β = 93.109 (2)°T = 298 K
V = 2476.8 (5) Å3Block-like, colorless
Z = 40.50 × 0.48 × 0.23 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2124 independent reflections
Radiation source: fine-focus sealed tube1209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.962, Tmax = 0.982k = 55
5830 measured reflectionsl = 4448
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1008P)2 + 5.3906P]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H36N2O4V = 2476.8 (5) Å3
Mr = 440.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.0031 (16) ŵ = 0.08 mm1
b = 4.6922 (6) ÅT = 298 K
c = 40.654 (3) Å0.50 × 0.48 × 0.23 mm
β = 93.109 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1209 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.982Rint = 0.076
5830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.260H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2124 reflectionsΔρmin = 0.23 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6948 (2)0.6651 (8)0.60162 (7)0.0693 (9)
O20.5126 (2)0.3324 (9)0.66379 (8)0.0803 (11)
H20.53750.42280.64890.120*
N10.6559 (2)0.5081 (8)0.62776 (8)0.0544 (9)
C10.6125 (3)0.8304 (11)0.58630 (10)0.0620 (12)
H1A0.64130.97230.57210.074*
H1B0.57690.93020.60320.074*
C20.5353 (3)0.6509 (11)0.56611 (10)0.0573 (11)
H2A0.57180.53580.55070.069*
H2B0.50100.52260.58070.069*
C30.4551 (3)0.8281 (11)0.54718 (10)0.0584 (11)
H3A0.48950.94700.53160.070*
H3B0.42270.95360.56250.070*
C40.3718 (3)0.6584 (11)0.52849 (10)0.0596 (11)
H4A0.33770.53840.54400.071*
H4B0.40400.53420.51300.071*
C50.2911 (3)0.8377 (11)0.50978 (10)0.0639 (12)
H5A0.32530.96130.49470.077*
H5B0.25740.95810.52530.077*
C60.8336 (3)0.3275 (14)0.63241 (13)0.0859 (17)
H6A0.83840.17950.61630.129*
H6B0.87860.28420.65130.129*
H6C0.85350.50600.62310.129*
C70.7246 (3)0.3474 (10)0.64272 (9)0.0508 (10)
C80.6903 (3)0.1753 (10)0.67002 (9)0.0510 (10)
C90.5870 (3)0.1717 (11)0.67948 (11)0.0626 (12)
C100.5576 (4)0.0034 (13)0.70503 (12)0.0759 (14)
H100.48950.00570.71090.091*
C110.6286 (4)0.1700 (13)0.72215 (12)0.0785 (15)
H110.60780.28500.73920.094*
C120.7295 (4)0.1711 (12)0.71384 (12)0.0778 (15)
H120.77730.28590.72540.093*
C130.7603 (3)0.0015 (11)0.68828 (10)0.0639 (12)
H130.82900.00410.68300.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0520 (16)0.081 (2)0.0734 (19)0.0094 (18)0.0129 (14)0.0220 (19)
O20.0520 (17)0.085 (2)0.104 (2)0.0082 (19)0.0014 (16)0.027 (2)
N10.0458 (17)0.058 (2)0.0580 (19)0.0004 (19)0.0087 (15)0.0059 (19)
C10.057 (2)0.064 (3)0.064 (2)0.010 (3)0.016 (2)0.019 (2)
C20.051 (2)0.061 (3)0.058 (2)0.004 (2)0.0098 (18)0.009 (2)
C30.055 (2)0.060 (3)0.060 (2)0.003 (2)0.0069 (19)0.017 (2)
C40.053 (2)0.062 (3)0.063 (2)0.001 (3)0.0090 (19)0.012 (2)
C50.054 (2)0.071 (3)0.066 (3)0.003 (3)0.011 (2)0.016 (3)
C60.056 (3)0.100 (4)0.102 (4)0.008 (3)0.001 (3)0.029 (4)
C70.045 (2)0.050 (2)0.056 (2)0.002 (2)0.0076 (18)0.007 (2)
C80.051 (2)0.046 (2)0.055 (2)0.012 (2)0.0067 (18)0.007 (2)
C90.062 (3)0.056 (3)0.069 (3)0.005 (3)0.000 (2)0.002 (3)
C100.074 (3)0.075 (3)0.079 (3)0.003 (3)0.010 (3)0.003 (3)
C110.102 (4)0.066 (3)0.067 (3)0.003 (4)0.008 (3)0.006 (3)
C120.101 (4)0.065 (3)0.066 (3)0.024 (3)0.010 (3)0.002 (3)
C130.066 (3)0.062 (3)0.062 (3)0.013 (3)0.007 (2)0.005 (3)
Geometric parameters (Å, º) top
O1—N11.409 (4)C5—H5A0.9700
O1—C11.436 (5)C5—H5B0.9700
O2—C91.359 (5)C6—C71.502 (6)
O2—H20.8200C6—H6A0.9600
N1—C71.296 (5)C6—H6B0.9600
C1—C21.517 (6)C6—H6C0.9600
C1—H1A0.9700C7—C81.462 (6)
C1—H1B0.9700C8—C131.413 (5)
C2—C31.511 (5)C8—C91.417 (6)
C2—H2A0.9700C9—C101.376 (7)
C2—H2B0.9700C10—C111.389 (7)
C3—C41.515 (6)C10—H100.9300
C3—H3A0.9700C11—C121.373 (7)
C3—H3B0.9700C11—H110.9300
C4—C51.516 (5)C12—C131.385 (7)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C13—H130.9300
C5—C5i1.537 (8)
N1—O1—C1108.7 (3)C4—C5—H5B108.8
C9—O2—H2109.5C5i—C5—H5B108.8
C7—N1—O1113.1 (3)H5A—C5—H5B107.7
O1—C1—C2113.0 (4)C7—C6—H6A109.5
O1—C1—H1A109.0C7—C6—H6B109.5
C2—C1—H1A109.0H6A—C6—H6B109.5
O1—C1—H1B109.0C7—C6—H6C109.5
C2—C1—H1B109.0H6A—C6—H6C109.5
H1A—C1—H1B107.8H6B—C6—H6C109.5
C3—C2—C1112.8 (4)N1—C7—C8116.5 (3)
C3—C2—H2A109.0N1—C7—C6122.8 (4)
C1—C2—H2A109.0C8—C7—C6120.6 (4)
C3—C2—H2B109.0C13—C8—C9116.4 (4)
C1—C2—H2B109.0C13—C8—C7120.6 (4)
H2A—C2—H2B107.8C9—C8—C7123.1 (4)
C2—C3—C4114.9 (4)O2—C9—C10116.9 (4)
C2—C3—H3A108.5O2—C9—C8121.9 (4)
C4—C3—H3A108.5C10—C9—C8121.2 (4)
C2—C3—H3B108.5C9—C10—C11120.7 (5)
C4—C3—H3B108.5C9—C10—H10119.7
H3A—C3—H3B107.5C11—C10—H10119.7
C3—C4—C5114.6 (4)C12—C11—C10119.8 (5)
C3—C4—H4A108.6C12—C11—H11120.1
C5—C4—H4A108.6C10—C11—H11120.1
C3—C4—H4B108.6C11—C12—C13120.1 (5)
C5—C4—H4B108.6C11—C12—H12119.9
H4A—C4—H4B107.6C13—C12—H12119.9
C4—C5—C5i113.9 (5)C12—C13—C8121.8 (4)
C4—C5—H5A108.8C12—C13—H13119.1
C5i—C5—H5A108.8C8—C13—H13119.1
C1—O1—N1—C7178.7 (3)C13—C8—C9—O2180.0 (4)
N1—O1—C1—C272.6 (4)C7—C8—C9—O20.7 (7)
O1—C1—C2—C3174.0 (4)C13—C8—C9—C100.2 (7)
C1—C2—C3—C4175.9 (4)C7—C8—C9—C10179.0 (4)
C2—C3—C4—C5179.5 (4)O2—C9—C10—C11179.3 (5)
C3—C4—C5—C5i178.5 (5)C8—C9—C10—C110.5 (8)
O1—N1—C7—C8179.5 (3)C9—C10—C11—C120.9 (8)
O1—N1—C7—C61.4 (6)C10—C11—C12—C130.5 (8)
N1—C7—C8—C13178.6 (4)C11—C12—C13—C80.2 (8)
C6—C7—C8—C133.3 (6)C9—C8—C13—C120.6 (6)
N1—C7—C8—C92.2 (6)C7—C8—C13—C12178.7 (4)
C6—C7—C8—C9175.9 (5)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.568 (5)146
C13—H13···O2ii0.932.663.565 (6)163
Symmetry code: (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC26H36N2O4
Mr440.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.0031 (16), 4.6922 (6), 40.654 (3)
β (°) 93.109 (2)
V3)2476.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.48 × 0.23
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5830, 2124, 1209
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.260, 1.03
No. of reflections2124
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.568 (5)145.9
C13—H13···O2i0.932.663.565 (6)163.4
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds