organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Cyano­phenyl­diazen-2-ium-1-yl)-2-naphtholate

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology, Normal University, Nanchang 330013, People's Republic of China, and bAcademic Administration of Jiangxi University of Traditional Chinese, Medicine, NanChang 330047, People's Republic of China
*Correspondence e-mail: yuyanhong001@yahoo.com.cn

(Received 17 July 2009; accepted 18 July 2009; online 29 July 2009)

In the mol­ecule of the zwitterionic title compound, C17H11N3O, the naphthalene ring system is planar [maximum deviation = 0.029 (3) Å] and is oriented at a dihedral angle of 3.55 (3)° with respect to the benzene ring. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar six-membered ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers.

Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). For a related structure, see: Rădulescu et al. (2006[Rădulescu, C., Hossu, A. M. & Ioniţă, I. (2006). Dyes Pigments, 71, 123-129.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N3O

  • Mr = 273.29

  • Monoclinic, P 21 /c

  • a = 5.2673 (11) Å

  • b = 9.910 (2) Å

  • c = 25.239 (6) Å

  • β = 96.13 (3)°

  • V = 1309.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.35 × 0.10 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.973, Tmax = 0.979

  • 13086 measured reflections

  • 2998 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.148

  • S = 1.02

  • 2998 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.91 2.580 (2) 133
C12—H12A⋯O1i 0.93 2.45 3.362 (2) 166
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azo compounds are characterized by the azo linkage (–N=N–) and are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004; Oueslati et al., 2004). We report herein the crystal structure of the title compound, obtained through the diazotization of 4-aminobenzonitrile followed by a coupling reaction with 2-naphthol.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C5/C10), B (C5-C10) and C (C11-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 2.32 (3), A/C = 2.58 (3) and B/C = 4.59 (3) °. The naphthalene ring system is planar with a maximum deviation of 0.029 (3) Å for atom C5. Intramolecular N-H···O hydrogen bond (Table 1) results in the formation of planar six-membered ring D (O1/N1/N2/C1/C2/H2A), which is oriented with respect to rings A, B and C at dihedral angles of A/D = 1.12 (3), B/D = 3.29 (3) and C/D = 1.47 (3) °. So, rings A, B, C and D are almost coplanar.

In the crystal structure, intermolecular C-H···O interactions link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). For a related structure, see: Rădulescu et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to a literature method (Rădulescu et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
1-(4-Cyanophenyldiazen-2-ium-1-yl)-2-naphtholate top
Crystal data top
C17H11N3OF(000) = 568
Mr = 273.29Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1658 reflections
a = 5.2673 (11) Åθ = 3.2–28.9°
b = 9.910 (2) ŵ = 0.09 mm1
c = 25.239 (6) ÅT = 294 K
β = 96.13 (3)°Block, red
V = 1309.9 (5) Å30.35 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.973, Tmax = 0.979l = 3232
13086 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.0861P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H11N3OV = 1309.9 (5) Å3
Mr = 273.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2673 (11) ŵ = 0.09 mm1
b = 9.910 (2) ÅT = 294 K
c = 25.239 (6) Å0.35 × 0.10 × 0.10 mm
β = 96.13 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1941 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.979Rint = 0.059
13086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2998 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2630 (3)0.03169 (14)0.45197 (5)0.0627 (4)
N10.3499 (3)0.15188 (14)0.36889 (6)0.0424 (4)
N20.5123 (3)0.16008 (14)0.41170 (5)0.0444 (4)
H2A0.49940.10720.43830.053*
N31.4464 (4)0.62761 (18)0.42541 (8)0.0731 (5)
C10.1628 (3)0.06230 (17)0.36607 (7)0.0427 (4)
C20.1200 (4)0.03101 (18)0.40895 (7)0.0503 (5)
C30.0963 (4)0.12070 (19)0.39970 (8)0.0576 (5)
H3A0.12840.18210.42610.069*
C40.2519 (4)0.11777 (18)0.35418 (8)0.0542 (5)
H4A0.38840.17770.35010.065*
C50.2179 (3)0.02633 (17)0.31131 (7)0.0456 (4)
C60.3895 (3)0.02176 (19)0.26515 (7)0.0534 (5)
H6A0.52660.08140.26140.064*
C70.3597 (4)0.0688 (2)0.22535 (7)0.0554 (5)
H7A0.47600.07110.19490.066*
C80.1543 (4)0.15722 (19)0.23078 (7)0.0514 (5)
H8A0.13290.21850.20370.062*
C90.0175 (3)0.15515 (18)0.27562 (7)0.0474 (4)
H9A0.15440.21490.27860.057*
C100.0106 (3)0.06409 (16)0.31707 (6)0.0410 (4)
C110.7076 (3)0.25635 (16)0.41359 (6)0.0398 (4)
C120.8755 (3)0.26618 (19)0.45927 (7)0.0505 (5)
H12A0.85790.20890.48780.061*
C131.0691 (4)0.36029 (19)0.46282 (7)0.0514 (5)
H13A1.18190.36660.49370.062*
C141.0948 (3)0.44545 (17)0.42018 (7)0.0446 (4)
C150.9273 (3)0.43388 (19)0.37409 (7)0.0509 (5)
H15A0.94560.49040.34530.061*
C160.7350 (3)0.33980 (18)0.37050 (7)0.0477 (4)
H16A0.62400.33210.33940.057*
C171.2921 (4)0.5465 (2)0.42332 (7)0.0533 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0707 (9)0.0608 (8)0.0547 (8)0.0102 (7)0.0025 (7)0.0170 (6)
N10.0445 (8)0.0398 (8)0.0427 (8)0.0009 (6)0.0035 (6)0.0017 (6)
N20.0509 (9)0.0406 (8)0.0417 (8)0.0023 (6)0.0044 (7)0.0056 (6)
N30.0691 (11)0.0661 (12)0.0849 (14)0.0198 (10)0.0124 (10)0.0066 (10)
C10.0452 (10)0.0373 (9)0.0464 (9)0.0016 (7)0.0087 (8)0.0003 (7)
C20.0557 (11)0.0443 (10)0.0515 (11)0.0010 (8)0.0091 (9)0.0054 (8)
C30.0612 (12)0.0487 (11)0.0638 (12)0.0088 (9)0.0104 (10)0.0127 (9)
C40.0503 (11)0.0446 (10)0.0680 (13)0.0085 (8)0.0084 (10)0.0016 (9)
C50.0459 (10)0.0413 (10)0.0505 (10)0.0009 (8)0.0100 (8)0.0057 (8)
C60.0474 (10)0.0532 (11)0.0591 (12)0.0049 (9)0.0031 (9)0.0092 (9)
C70.0531 (11)0.0616 (12)0.0501 (11)0.0027 (10)0.0005 (9)0.0086 (9)
C80.0563 (11)0.0534 (11)0.0448 (10)0.0023 (9)0.0064 (9)0.0002 (8)
C90.0486 (10)0.0461 (10)0.0481 (10)0.0027 (8)0.0084 (8)0.0017 (8)
C100.0426 (9)0.0376 (9)0.0436 (9)0.0025 (7)0.0087 (7)0.0034 (7)
C110.0425 (9)0.0354 (9)0.0421 (9)0.0019 (7)0.0080 (7)0.0002 (7)
C120.0621 (12)0.0494 (11)0.0392 (9)0.0036 (9)0.0021 (9)0.0042 (8)
C130.0551 (11)0.0540 (11)0.0436 (10)0.0057 (9)0.0016 (8)0.0025 (8)
C140.0435 (9)0.0422 (9)0.0488 (10)0.0004 (8)0.0090 (8)0.0023 (8)
C150.0520 (11)0.0498 (10)0.0517 (10)0.0005 (9)0.0088 (9)0.0122 (8)
C160.0483 (10)0.0505 (10)0.0429 (9)0.0007 (8)0.0007 (8)0.0074 (8)
C170.0523 (11)0.0541 (11)0.0543 (11)0.0045 (9)0.0098 (9)0.0034 (9)
Geometric parameters (Å, º) top
O1—C21.254 (2)C7—C81.387 (3)
N1—N21.3072 (19)C7—H7A0.9300
N1—C11.323 (2)C8—C91.372 (2)
N2—C111.400 (2)C8—H8A0.9300
N2—H2A0.8600C9—C101.401 (2)
N3—C171.141 (2)C9—H9A0.9300
C1—C101.457 (2)C11—C121.380 (2)
C1—C21.459 (2)C11—C161.386 (2)
C2—C31.444 (3)C12—C131.378 (2)
C3—C41.338 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.386 (2)
C4—C51.437 (3)C13—H13A0.9300
C4—H4A0.9300C14—C151.387 (2)
C5—C61.397 (2)C14—C171.439 (3)
C5—C101.408 (2)C15—C161.373 (2)
C6—C71.369 (3)C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9300
N2—N1—C1120.28 (14)C7—C8—H8A119.6
N1—N2—C11118.95 (14)C8—C9—C10120.83 (17)
N1—N2—H2A120.5C8—C9—H9A119.6
C11—N2—H2A120.5C10—C9—H9A119.6
N1—C1—C10115.69 (15)C9—C10—C5118.39 (16)
N1—C1—C2123.97 (16)C9—C10—C1122.33 (15)
C10—C1—C2120.31 (15)C5—C10—C1119.27 (15)
O1—C2—C3121.83 (17)C12—C11—C16120.16 (16)
O1—C2—C1121.30 (16)C12—C11—N2118.66 (15)
C3—C2—C1116.86 (17)C16—C11—N2121.18 (16)
C4—C3—C2121.70 (18)C13—C12—C11120.41 (16)
C4—C3—H3A119.1C13—C12—H12A119.8
C2—C3—H3A119.1C11—C12—H12A119.8
C3—C4—C5123.09 (17)C12—C13—C14119.67 (17)
C3—C4—H4A118.5C12—C13—H13A120.2
C5—C4—H4A118.5C14—C13—H13A120.2
C6—C5—C10119.42 (16)C13—C14—C15119.65 (16)
C6—C5—C4121.78 (16)C13—C14—C17120.72 (17)
C10—C5—C4118.76 (16)C15—C14—C17119.63 (16)
C7—C6—C5121.22 (17)C16—C15—C14120.67 (16)
C7—C6—H6A119.4C16—C15—H15A119.7
C5—C6—H6A119.4C14—C15—H15A119.7
C6—C7—C8119.42 (18)C15—C16—C11119.44 (16)
C6—C7—H7A120.3C15—C16—H16A120.3
C8—C7—H7A120.3C11—C16—H16A120.3
C9—C8—C7120.72 (18)N3—C17—C14179.1 (2)
C9—C8—H8A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.912.580 (2)133
C12—H12A···O1i0.932.453.362 (2)166
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H11N3O
Mr273.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)5.2673 (11), 9.910 (2), 25.239 (6)
β (°) 96.13 (3)
V3)1309.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.973, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
13086, 2998, 1941
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.148, 1.02
No. of reflections2998
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.912.580 (2)133
C12—H12A···O1i0.932.453.362 (2)166
Symmetry code: (i) x+1, y, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationRădulescu, C., Hossu, A. M. & Ioniţă, I. (2006). Dyes Pigments, 71, 123–129.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds