organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1962-o1963

2-(1H-Pyrazol-3-yl)pyridinium chloride monohydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 15 July 2009; accepted 17 July 2009; online 25 July 2009)

The title organic salt, C8H8N3+·Cl·H2O, exhibits a rich hydrogen-bonding network involving all constituent species. The water mol­ecules are engaged in strong O—H⋯Cl inter­actions with the chloride anions, two neighboring protonated 2-(1H-pyrazol-3-yl)pyridinium species inter­act via N—H⋯N bonds with two pyrazole rings. Further, a short and highly directional C—H⋯O inter­action is observed connecting the pyridinium ring to the water mol­ecule of crystallization. Weak C—H⋯Cl and N—H⋯Cl inter­actions contribute to the stabilization of the crystal structure.

Related literature

For related structures with 2-(3-pyrazol­yl)pyridine or its derivatives, see: Coelho et al. (2006[Coelho, A. C., Paz, F. A. A., Klinowski, J., Pillinger, M. & Gonçalves, I. S. (2006). Molecules, 11, 940-952.], 2007[Coelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380-o1382.]); Fleming et al. (1998[Fleming, J. S., Psillakis, E., Jeffery, J. C., Mann, K. L. V., McCleverty, J. A. & Ward, M. D. (1998). Polyhedron, 17, 1705-1714.]); Jones et al. (1997[Jones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567-1571.]); Lam et al. (1997[Lam, M. H. W., Cheung, S. T. C., Fung, K. M. & Wong, W. T. (1997). Inorg. Chem. 36, 4618-4619.]); Leita et al. (2004[Leita, B. A., Moubaraki, B., Murray, K. S., Smith, J. P. & Cashion, J. D. (2004). Chem. Commun. pp. 156-157.]); Li (2007[Li, R. (2007). Acta Cryst. E63, m1640.]); Liu et al. (2006[Liu, C. S., Shi, X. S., Li, J. R., Wang, J. J. & Bu, X. H. (2006). Cryst. Growth Des. 6, 656-663.]); Mokuolu et al. (2007[Mokuolu, Q. F., Foguet-Albiol, D., Jones, L. F., Wolowska, J., Kowalczyk, R. M., Kilner, C. A., Christou, G., McGowan, P. C. & Halcrow, M. A. (2007). Dalton Trans. pp. 1392-1399.]); Hu, Li et al. (2006[Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.]); Hu, Wang et al. (2006[Hu, T. L., Wang, J. J., Li, J. R. & Bu, X. H. (2006). J. Mol. Struct. 796, 18-22.]); Hu et al. (2008[Hu, T. L., Zou, R. Q., Li, J. R. & Bu, X. H. (2008). Dalton Trans. pp. 1302-1311.]); Huo et al. (2006[Huo, L.-H., Cheng, X. L., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m460-m462.]); Ward, Fleming et al. (1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.]); Ward, Mann et al. (1998[Ward, M. D., Mann, K. L. V., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 601-603.]). For detailed background to the role of hydrogen bonds in the supra­molecular organization of organic crystals, see: Nangia & Desiraju (1998[Nangia, A. & Desiraju, G. R. (1998). Topics in Current Chemistry, Vol. 198, edited by E. Weber, pp. 57-96. Berlin Heidelberg: Springer Verlag.]). For general background studies on crystal engineering approaches from our research group, see: Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N3+·Cl·H2O

  • Mr = 199.64

  • Triclinic, [P \overline 1]

  • a = 6.8487 (2) Å

  • b = 8.3523 (3) Å

  • c = 9.0843 (3) Å

  • α = 114.693 (1)°

  • β = 99.867 (2)°

  • γ = 91.097 (2)°

  • V = 462.75 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 150 K

  • 0.18 × 0.15 × 0.09 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.951

  • 26245 measured reflections

  • 4422 independent reflections

  • 3687 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.162

  • S = 1.07

  • 4422 reflections

  • 124 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.25 2.9502 (16) 137
O1W—H1A⋯Cl1ii 0.940 (19) 2.176 (10) 3.1113 (13) 173 (2)
O1W—H1B⋯Cl1 0.95 (2) 2.279 (11) 3.2106 (12) 170 (2)
C5—H5⋯O1Wiii 0.95 0 2.7203 (16) 156
C8—H8⋯Cl1iv 0.95 0 3.5862 (18) 137
N3—H3⋯Cl1v 0.88 2.94 3.7915 (15) 162
C2—H2⋯Cl1v 0.95 0 3.5604 (13) 159
C6—H6⋯Cl1vi 0.95 0 3.5329 (14) 127
C7—H7⋯Cl1vi 0.95 0 3.5649 (14) 123
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, molecules derived from 2-(3-pyrazolyl)pyridine have been very much explored in coordination chemistry as N,N-chelating moieties, N,N-bridging (the two N-atoms from the pyrazolyl aromatic ring), or even a combination of these two coordination modes, in conjunction with other ligands to produce functional complexes which, ultimately, may find applications in catalysis or as photoluminescent devices. Indeed, a search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) reveals a plethora of transition metal complexes: Ag+ (Li, 2007), Cd2+ (Hu et al., 2008; Liu et al., 2006; Hu, Wang et al., 2006; Huo et al., 2006), Cu2+ (Hu, Li et al., 2006; Fleming et al., 1998; Mokuolu et al., 2007), Cu+ (Lam et al., 1997), Fe2+ (Leita et al., 2004), Fe3+ (Jones et al., 1997), In3+ (Ward, Mann et al., 1998), Pd2+ (Ward, Fleming et al., 1998), Ru2+ (Lam et al., 1997), Zn2+ (Hu et al., 2008).

Our research group has been particularly interested in the use of this molecule and its derivatives. For example, we have reported the crystal structures of both the molybdenum complex cis-[Mo(CO)4L] (Coelho et al., 2006) and the organic ligand L {ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate} (Coelho et al., 2007). We have recently isolated single crystals of (I) as a secondary (minor) phase (see Experimental). Following our on-going interest in the structural details of organic crystals (Paz & Klinowski, 2003; Paz et al., 2002), here we report the supramolecular structure at 150 K of the monohydrate form of the title salt: C8H8N3+Cl-.H2O, (I).

The asymmetric unit of the title compound, (I), is composed of a cationic C8H8N3+ moiety (protonated at the pyridine ring), one chloride anion and one water molecule of crystallization (Fig. 1). The two aromatic rings of 2-(3-pyrazolyl)pyridinium can be considered as coplanar (the average planes containing the rings are tilted by only ca 1°).

The existence of several chemical groups capable of hydrogen bonding either as donors or acceptors leads to the formation of a complex supramolecular network. Water molecules and chloride anions are involved in strong (dD···A ranging between ca 3.11 and 3.21 Å) and highly directional [<(DHA) angles above 170° - see Table 1] O—H···Cl hydrogen bonding interactions forming a R22(8) graph set motif as depicted in Fig. 2a (Bernstein et al., 1995). It is important to emphasize that the water molecule itself acts as the acceptor in an unusual C—H···Owater interaction. Indeed, even though this interaction is not considered as classic (Nangia & Desiraju, 1998), in the structure of (I) the dD···A distance is considered short [2.7203 (16) Å] and the <(DHA) angle is 156°. Thus, these geometric parameters allow us to infer that this interaction seems to play an important role in the supramolecular organization of (I). In addition, the close proximity of the pyrazolyl rings belonging to two adjacent 2-(3-pyrazolyl)pyridinium moieties promote the formation of two N—H···N interactions describing a R22(6) motif (Fig. 2a). The alternation between the two aforementioned graph set motifs and the single C—H···Owater interaction leads to the formation of a supramolecular tape (solely based on strong interactions) running parallel to the [011] vector of the unit cell (Fig. 3).

The crystal packing of (I) is further promoted by the existence of a number of weak C—H···Cl and one N—H···Cl hydrogen bonding interactions as shown in Fig. 2b (Table 1), which establish connections between adjacent supramolecular tapes (not shown).

Related literature top

For related structures with 2-(3-pyrazolyl)pyridine or its derivatives, see: Coelho et al. (2006, 2007); Fleming et al. (1998); Jones et al. (1997); Lam et al. (1997); Leita et al. (2004); Li (2007); Liu et al. (2006); Mokuolu et al. (2007); Hu, Li et al. (2006); Hu, Wang et al. (2006); Hu et al. (2008); Huo et al. (2006); Ward, Fleming et al. (1998); Ward, Mann et al. (1998). For detailed background to the role of hydrogen bonds in the supramolecular organization of organic crystals, see: Nangia & Desiraju (1998). For general background studies on crystal engineering approaches from our research group, see: Paz & Klinowski (2003); Paz et al. (2002). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). .

Experimental top

Crystals of (I) were isolated as a secondary product while reacting in dichloromethane MoO2Cl2 with 2-(3-pyrazolyl)pyridine.

Refinement top

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding model approximation with C—H = 0.95 Å and N—H = 0.88 Å, and with U(H) set to 1.2Ueq(C, N).

H atoms associated with the water molecule of crystallization were directly located from difference Fourier maps and included in the structure with the O—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, with U(H) set to 1.5Ueq(O).

The final difference Fourier map synthesis showed the highest peak (1.26 eÅ-3) located at 0.25 Å from the C5 atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I) with all non-hydrogen atoms represented as thermal displacement ellipsoids drawn at the 80% probability level and hydrogen atoms as small spheres with arbitrary radii. The labeling scheme is provided for all non-hydrogen atoms.
[Figure 2] Fig. 2. Hydrogen bonds interconnecting the chemical moieties present in (I). (a) Strong N—H···N, O—H···Cl and short C—H···O interactions (violet dashed lines), leading to the formation of a 1-D supramolecular tape composed by the alternation of R42(8), R22(6) and S graph set motifs. (b) Weak N—H···Cl and C—H···Cl interactions (orange dashed lines). For clarity all symmetry transformations used to generate equivalent atoms have been omitted. See Table 1 for geometric details of the highlighted hydrogen bonding interactions.
[Figure 3] Fig. 3. Crystal packing viewed along the [100] direction of the unit cell. Strong hydrogen bonds (N—H···N, O—H···Cl and short C—H···O) are represented as violet dashed lines.
[Figure 4] Fig. 4. Asymmetric unit of the title compound will all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level.
[Figure 5] Fig. 5. Crystal packing of the title compound.
2-(1H-Pyrazol-3-yl)pyridinium chloride monohydrate top
Crystal data top
C8H8N3+·Cl·H2OZ = 2
Mr = 199.64F(000) = 208
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8487 (2) ÅCell parameters from 9894 reflections
b = 8.3523 (3) Åθ = 2.5–39.6°
c = 9.0843 (3) ŵ = 0.38 mm1
α = 114.693 (1)°T = 150 K
β = 99.867 (2)°Prism, colourless
γ = 91.097 (2)°0.18 × 0.15 × 0.09 mm
V = 462.75 (3) Å3
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed tube3687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 36.3°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.930, Tmax = 0.951k = 1313
26245 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 1.26 e Å3
3 restraintsΔρmin = 0.99 e Å3
Crystal data top
C8H8N3+·Cl·H2Oγ = 91.097 (2)°
Mr = 199.64V = 462.75 (3) Å3
Triclinic, P1Z = 2
a = 6.8487 (2) ÅMo Kα radiation
b = 8.3523 (3) ŵ = 0.38 mm1
c = 9.0843 (3) ÅT = 150 K
α = 114.693 (1)°0.18 × 0.15 × 0.09 mm
β = 99.867 (2)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4422 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3687 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.951Rint = 0.024
26245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.26 e Å3
4422 reflectionsΔρmin = 0.99 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61184 (17)0.19217 (15)0.62050 (15)0.0183 (2)
H10.50100.15000.63430.022*
N20.70080 (17)0.10464 (15)0.49209 (14)0.0173 (2)
N31.1678 (2)0.28024 (18)0.43052 (18)0.0245 (2)
H31.19390.38320.51760.029*
C10.7105 (2)0.35120 (18)0.72575 (18)0.0209 (2)
H1C0.67380.43350.82390.025*
C20.8746 (2)0.37168 (17)0.66403 (18)0.0195 (2)
H20.97420.46940.70950.023*
C30.86126 (18)0.21518 (16)0.51834 (16)0.0153 (2)
C40.99968 (18)0.16869 (16)0.40505 (16)0.0155 (2)
C50.96578 (17)0.01058 (15)0.27103 (14)0.01290 (18)
H50.85090.06580.25330.015*
C61.0876 (2)0.04322 (19)0.16188 (17)0.0206 (2)
H61.05890.15640.07050.025*
C71.2539 (2)0.0651 (2)0.18193 (19)0.0231 (3)
H71.33930.02850.10420.028*
C81.2942 (2)0.2287 (2)0.31810 (19)0.0220 (2)
H81.40810.30520.33430.026*
Cl10.67400 (5)0.34331 (4)0.14179 (4)0.02184 (10)
O1W0.68083 (18)0.73153 (15)0.15022 (15)0.0261 (2)
H1A0.575 (3)0.719 (3)0.064 (2)0.039*
H1B0.692 (4)0.623 (2)0.159 (3)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0160 (4)0.0180 (5)0.0194 (5)0.0016 (4)0.0048 (4)0.0061 (4)
N20.0165 (4)0.0166 (4)0.0173 (4)0.0016 (3)0.0037 (4)0.0059 (4)
N30.0234 (5)0.0216 (5)0.0292 (6)0.0003 (4)0.0076 (5)0.0107 (5)
C10.0206 (6)0.0170 (5)0.0217 (6)0.0001 (4)0.0062 (5)0.0042 (4)
C20.0182 (5)0.0147 (5)0.0228 (6)0.0012 (4)0.0049 (4)0.0051 (4)
C30.0144 (5)0.0142 (4)0.0172 (5)0.0002 (4)0.0023 (4)0.0068 (4)
C40.0150 (5)0.0147 (5)0.0174 (5)0.0004 (4)0.0025 (4)0.0076 (4)
C50.0123 (4)0.0127 (4)0.0128 (4)0.0003 (3)0.0011 (3)0.0052 (3)
C60.0219 (6)0.0208 (5)0.0184 (5)0.0033 (4)0.0051 (4)0.0073 (4)
C70.0219 (6)0.0259 (6)0.0249 (6)0.0042 (5)0.0096 (5)0.0123 (5)
C80.0190 (5)0.0227 (6)0.0276 (6)0.0003 (4)0.0077 (5)0.0129 (5)
Cl10.01974 (15)0.02010 (15)0.02130 (16)0.00223 (11)0.00433 (11)0.00468 (11)
O1W0.0240 (5)0.0202 (5)0.0275 (5)0.0047 (4)0.0012 (4)0.0065 (4)
Geometric parameters (Å, º) top
N1—N21.3471 (16)C3—C41.4572 (18)
N1—C11.3485 (18)C4—C51.3521 (17)
N1—H10.8800C5—C61.3439 (18)
N2—C31.3433 (16)C5—H50.9500
N3—C81.389 (2)C6—C71.379 (2)
N3—C41.3908 (18)C6—H60.9500
N3—H30.8800C7—C81.389 (2)
C1—C21.3765 (19)C7—H70.9500
C1—H1C0.9500C8—H80.9500
C2—C31.4061 (18)O1W—H1A0.940 (19)
C2—H20.9500O1W—H1B0.95 (2)
N2—N1—C1112.87 (11)C5—C4—N3118.43 (12)
N2—N1—H1123.6C5—C4—C3119.14 (11)
C1—N1—H1123.6N3—C4—C3122.42 (12)
C3—N2—N1104.03 (10)C6—C5—C4122.82 (12)
C8—N3—C4119.79 (13)C6—C5—H5118.6
C8—N3—H3120.1C4—C5—H5118.6
C4—N3—H3120.1C5—C6—C7120.30 (13)
N1—C1—C2107.03 (12)C5—C6—H6119.8
N1—C1—H1C126.5C7—C6—H6119.8
C2—C1—H1C126.5C6—C7—C8118.69 (13)
C1—C2—C3104.32 (11)C6—C7—H7120.7
C1—C2—H2127.8C8—C7—H7120.7
C3—C2—H2127.8N3—C8—C7119.94 (13)
N2—C3—C2111.76 (11)N3—C8—H8120.0
N2—C3—C4121.41 (11)C7—C8—H8120.0
C2—C3—C4126.84 (11)H1A—O1W—H1B110.2 (14)
C1—N1—N2—C30.48 (15)C2—C3—C4—C5179.05 (13)
N2—N1—C1—C20.23 (17)N2—C3—C4—N3179.37 (12)
N1—C1—C2—C30.12 (16)C2—C3—C4—N30.1 (2)
N1—N2—C3—C20.55 (15)N3—C4—C5—C60.11 (19)
N1—N2—C3—C4179.90 (11)C3—C4—C5—C6179.10 (12)
C1—C2—C3—N20.43 (16)C4—C5—C6—C71.1 (2)
C1—C2—C3—C4179.74 (13)C5—C6—C7—C81.0 (2)
C8—N3—C4—C50.9 (2)C4—N3—C8—C70.9 (2)
C8—N3—C4—C3179.96 (13)C6—C7—C8—N30.1 (2)
N2—C3—C4—C50.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.252.9502 (16)137
O1W—H1A···Cl1ii0.94 (2)2.18 (1)3.1113 (13)173 (2)
O1W—H1B···Cl10.95 (2)2.28 (1)3.2106 (12)170 (2)
C5—H5···O1Wiii0.952.7203 (16)156
C8—H8···Cl1iv0.953.5862 (18)137
N3—H3···Cl1v0.882.943.7915 (15)162
C2—H2···Cl1v0.953.5604 (13)159
C6—H6···Cl1vi0.953.5329 (14)127
C7—H7···Cl1vi0.953.5649 (14)123
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC8H8N3+·Cl·H2O
Mr199.64
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.8487 (2), 8.3523 (3), 9.0843 (3)
α, β, γ (°)114.693 (1), 99.867 (2), 91.097 (2)
V3)462.75 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.18 × 0.15 × 0.09
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.930, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
26245, 4422, 3687
Rint0.024
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.162, 1.07
No. of reflections4422
No. of parameters124
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.26, 0.99

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.252.9502 (16)137
O1W—H1A···Cl1ii0.940 (19)2.176 (10)3.1113 (13)173 (2)
O1W—H1B···Cl10.95 (2)2.279 (11)3.2106 (12)170 (2)
C5—H5···O1Wiii0.95.2.7203 (16)156
C8—H8···Cl1iv0.95.3.5862 (18)137
N3—H3···Cl1v0.882.943.7915 (15)162
C2—H2···Cl1v0.95.3.5604 (13)159
C6—H6···Cl1vi0.95.3.5329 (14)127
C7—H7···Cl1vi0.95.3.5649 (14)123
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+2, y, z.
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (Project PTDC/QUI/71198/2006) and also for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380–o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoelho, A. C., Paz, F. A. A., Klinowski, J., Pillinger, M. & Gonçalves, I. S. (2006). Molecules, 11, 940–952.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFleming, J. S., Psillakis, E., Jeffery, J. C., Mann, K. L. V., McCleverty, J. A. & Ward, M. D. (1998). Polyhedron, 17, 1705–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, T. L., Wang, J. J., Li, J. R. & Bu, X. H. (2006). J. Mol. Struct. 796, 18–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, T. L., Zou, R. Q., Li, J. R. & Bu, X. H. (2008). Dalton Trans. pp. 1302–1311.  Web of Science CSD CrossRef Google Scholar
First citationHuo, L.-H., Cheng, X. L., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m460–m462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567–1571.  CSD CrossRef CAS Web of Science Google Scholar
First citationLam, M. H. W., Cheung, S. T. C., Fung, K. M. & Wong, W. T. (1997). Inorg. Chem. 36, 4618–4619.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLeita, B. A., Moubaraki, B., Murray, K. S., Smith, J. P. & Cashion, J. D. (2004). Chem. Commun. pp. 156–157.  Web of Science CSD CrossRef Google Scholar
First citationLi, R. (2007). Acta Cryst. E63, m1640.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C. S., Shi, X. S., Li, J. R., Wang, J. J. & Bu, X. H. (2006). Cryst. Growth Des. 6, 656–663.  Web of Science CSD CrossRef Google Scholar
First citationMokuolu, Q. F., Foguet-Albiol, D., Jones, L. F., Wolowska, J., Kowalczyk, R. M., Kilner, C. A., Christou, G., McGowan, P. C. & Halcrow, M. A. (2007). Dalton Trans. pp. 1392–1399.  Web of Science CSD CrossRef Google Scholar
First citationNangia, A. & Desiraju, G. R. (1998). Topics in Current Chemistry, Vol. 198, edited by E. Weber, pp. 57–96. Berlin Heidelberg: Springer Verlag.  Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Mann, K. L. V., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 601–603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1962-o1963
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds