organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1862-o1863

cis-1-Ethyl-4,4,6,8-tetra­methyl-2-tosyl-2,3,3a,4,6,7,8,9-octa­hydro-1H-pyrrolo[3′,4′:3,4]pyrano[6,5-d]pyrimidine-7,9-dione

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 5 July 2009; accepted 7 July 2009; online 15 July 2009)

In the title compound, C22H29N3O5S, the pyrrolidine ring is cis-fused to the dihydro­pyran ring. The pyrrolidine and dihydro­pyran rings adopt twist and half-chair conformations, respectively. The mol­ecule is in a folded conformation; the sulfonyl-bound benzene ring lies over the pyrimidine­dione ring, with a weak ππ inter­action [centroid–centroid distance = 3.6147 (4) Å]. A weak intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For the trans isomer, see: Chinnakali et al. (2007[Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4434-o4435.]). For the biological activity of pyran­opyrimidine derivatives, see: Abdel Fattah et al. (2004[Abdel Fattah, M. E., Atta, A. H., Abdel Gawad, I. I. & Mina, S. M. (2004). Orient. J. Chem. 20, 257-262.]); Bedair et al. (2000[Bedair, A. H., El-Hady, N. A., El-Latif, A., Fakery, A. H. & El-Agrody, A. M. (2000). Farmaco, 55, 708-714.], 2001[Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. & El-Agrody, A. M. (2001). Farmaco, 56, 965-973.]); Eid et al. (2004[Eid, F. A., Abd El-Wahab, A. H., Ali, G. A. & Khafagy, M. M. (2004). Acta Pharm. 54, 13-26.]); Shamroukh et al. (2007[Shamroukh, A. H., Zaki, M. E., Morsy, E. M., Abdel-Motti, F. M. & Abdel-Megeid, F. M. (2007). Arch. Pharm. (Weinheim), 340, 236-343.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C22H29N3O5S

  • Mr = 447.54

  • Monoclinic, P 21 /n

  • a = 13.2140 (2) Å

  • b = 9.5681 (2) Å

  • c = 16.8256 (3) Å

  • β = 98.946 (1)°

  • V = 2101.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.59 × 0.46 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.945

  • 92335 measured reflections

  • 10993 independent reflections

  • 9848 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.105

  • S = 1.08

  • 10993 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5 0.98 2.43 3.0422 (8) 120
C1—H1B⋯O4i 0.97 2.54 3.5072 (8) 177
C16—H16B⋯O5ii 0.96 2.57 3.3914 (8) 144
C19—H19C⋯O1iii 0.96 2.52 3.4006 (9) 153
C20—H20C⋯O2iv 0.96 2.51 3.2335 (8) 132
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyranopyrimidine derivatives exhibit antiviral (Shamroukh et al., 2007) and antimicrobial activities (Bedair et al., 2000, 2001; Eid et al., 2004; Abdel Fattah et al., 2004). Previously, we have reported the crystal structure of trans-1-ethyl-4,4,6,8-tetramethyl- 2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1H-pyrrolo[3,4-c]pyrano[6,5-d]pyrimidine-7,9-dione (Chinnakali et al., 2007). Now we report the crystal structure of the title compound, a cis isomer.

In the title cis isomer, the pyrrolidine ring (N1/C1—C4) adopts a twist conformation compared to envelope conformations in the two independent molecules of the trans isomer. The relevant asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] is 6.01 (6)°, and Cremer & Pople (1975) puckering parameters Q and ϕ are 0.3823 (7) Å and 264.96 (10)°, respectively. The dihydropyran ring adopts a half-chair conformation, with the local twofold axis passing through the midpoint of the C2—C5 and C6—C7 bonds. The asymmetry parameter ΔC2[C2–C5] is 4.33 (7)° and the puckering parameters Q, θ and ϕ are 0.4800 (7) Å, 127.48 (7)° and 267.38 (9)°, respectively. In both independent molecules of the trans isomer, the dihydropyran ring adopts an envelope conformation. The tosyl group is equatorially attached to the pyrrolidine ring, whereas the ethyl group is axially attached. The sulfonyl group has a distorted tetrahedral geometry. The pyrrolidine ring is cis-fused to the dihydropyran ring. The dihedral angle between the pyrimidine and benzene rings is 10.84 (3)°. The corresponding bond lengths and angles in the two isomers agree with each other.

A superposition of non-H atoms in the dimethyl pyrimidine-7,9-dione unit of the cis isomer (title molecule) and molecule A of the trans isomer (Chinnakali et al., 2007) (Fig. 2) shows that the overall conformations of these isomers are different. The trans -fusion results in an extended ring system, with the tosyl group bending away from the fused ring system. In the cis-isomer, the molecule is in a folded conformation, with the sulfonyl-bound benzene ring lying over the pyrimidinedione ring. As a result of the folded conformation, the benzene and pyrimidinedione rings of the cis isomer are placed one over the other with weak π-π interactions (centroid-centroid distance = 3.6147 (4) Å).

A weak intramolecular C4—H4···O5 hydrogen bond generates an S(6) ring motif. The molecules exist as a C—H···O hydrogen-bonded dimer, generating a ring of graph-set motif R22(20). The dimers are linked into a three-dimensional network by C—H···O hydrogen bonds (Fig. 3).

Related literature top

For the trans isomer, see: Chinnakali et al. (2007). For the biological activity of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Eid et al. (2004); Shamroukh et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976).

Experimental top

To a solution of barbituric acid (1 mmol) in toluene (20 ml) the corresponding 2-(N-prenyl-N-tosylamino]acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å. The Uiso values were set equal to 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed open line indicates a π-π interaction and the dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Fit of the title molecule (solid lines) on molecule A (dashed lines) of the trans isomer. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
cis-1-Ethyl-4,4,6,8-tetramethyl-2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1H-pyrrolo[3',4':3,4]pyrano[6,5-d]pyrimidine-7,9-dione top
Crystal data top
C22H29N3O5SF(000) = 952
Mr = 447.54Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9302 reflections
a = 13.2140 (2) Åθ = 2.5–40.9°
b = 9.5681 (2) ŵ = 0.20 mm1
c = 16.8256 (3) ÅT = 100 K
β = 98.946 (1)°Block, colourless
V = 2101.43 (7) Å30.59 × 0.46 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10993 independent reflections
Radiation source: fine-focus sealed tube9848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 37.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2220
Tmin = 0.864, Tmax = 0.945k = 1616
92335 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.4609P]
where P = (Fo2 + 2Fc2)/3
10993 reflections(Δ/σ)max = 0.002
286 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H29N3O5SV = 2101.43 (7) Å3
Mr = 447.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2140 (2) ŵ = 0.20 mm1
b = 9.5681 (2) ÅT = 100 K
c = 16.8256 (3) Å0.59 × 0.46 × 0.29 mm
β = 98.946 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9848 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.945Rint = 0.026
92335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.08Δρmax = 0.60 e Å3
10993 reflectionsΔρmin = 0.43 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.583987 (12)0.842927 (15)0.406869 (9)0.01234 (4)
O10.65851 (4)0.94222 (5)0.38823 (4)0.01920 (10)
O20.54783 (5)0.84656 (6)0.48296 (3)0.01802 (10)
O30.48049 (4)0.66605 (5)0.12573 (3)0.01221 (8)
O40.56281 (5)0.22291 (5)0.20707 (4)0.01945 (10)
O50.34489 (4)0.46219 (5)0.34319 (3)0.01542 (9)
N10.48436 (4)0.86053 (6)0.33745 (3)0.01170 (8)
N20.52189 (4)0.44704 (5)0.16924 (3)0.01178 (8)
N30.45765 (4)0.34362 (5)0.27803 (3)0.01201 (9)
C10.50142 (5)0.87879 (6)0.25331 (4)0.01246 (9)
H1A0.55680.81970.24140.015*
H1B0.51700.97530.24250.015*
C20.39850 (5)0.83406 (6)0.20456 (4)0.01116 (9)
H20.35070.91290.20110.013*
C30.36105 (4)0.71839 (6)0.25639 (3)0.01025 (9)
H30.28650.70810.24370.012*
C40.39216 (4)0.77336 (6)0.34312 (4)0.01094 (9)
H40.41100.69480.37980.013*
C50.40701 (5)0.78390 (6)0.11965 (4)0.01210 (9)
C60.46937 (4)0.56814 (6)0.18057 (3)0.01023 (9)
C70.41350 (4)0.58284 (6)0.24165 (3)0.01009 (9)
C80.63400 (5)0.67386 (6)0.39643 (4)0.01179 (9)
C90.60216 (5)0.56445 (7)0.44136 (4)0.01306 (10)
H90.55620.58090.47690.016*
C100.63973 (5)0.43040 (7)0.43263 (4)0.01394 (10)
H100.61770.35720.46200.017*
C110.71018 (5)0.40403 (7)0.38037 (4)0.01433 (10)
C120.74167 (5)0.51562 (7)0.33623 (4)0.01645 (11)
H120.78840.49960.30120.020*
C130.70416 (5)0.64999 (7)0.34392 (4)0.01486 (10)
H130.72570.72330.31430.018*
C140.75187 (6)0.25884 (7)0.37293 (5)0.02037 (12)
H14A0.74060.20400.41850.031*
H14B0.82400.26400.37090.031*
H14C0.71750.21600.32460.031*
C150.45325 (6)0.89403 (7)0.07111 (4)0.01763 (11)
H15A0.45950.85700.01910.026*
H15B0.51980.91980.09870.026*
H15C0.40970.97490.06490.026*
C160.30475 (5)0.73203 (7)0.07499 (4)0.01565 (10)
H16A0.31280.70400.02160.023*
H16B0.25500.80570.07210.023*
H16C0.28200.65370.10310.023*
C170.51744 (5)0.33126 (6)0.21815 (4)0.01279 (9)
C180.40139 (5)0.46334 (6)0.29140 (4)0.01094 (9)
C190.58284 (6)0.43377 (7)0.10385 (4)0.01794 (12)
H19A0.56320.50550.06460.027*
H19B0.57090.34370.07900.027*
H19C0.65420.44330.12520.027*
C200.45052 (6)0.22000 (7)0.32843 (4)0.01626 (11)
H20A0.51760.18090.34410.024*
H20B0.40670.15180.29860.024*
H20C0.42260.24640.37560.024*
C210.30950 (5)0.86157 (7)0.37333 (4)0.01587 (11)
H21A0.33970.91150.42140.019*
H21B0.28410.93030.33270.019*
C220.21975 (5)0.77395 (9)0.39250 (4)0.02000 (13)
H22A0.17150.83340.41330.030*
H22B0.24450.70440.43190.030*
H22C0.18670.72900.34440.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01271 (7)0.00984 (6)0.01338 (7)0.00042 (4)0.00136 (5)0.00091 (4)
O10.0160 (2)0.01258 (19)0.0272 (3)0.00482 (16)0.00210 (18)0.00116 (17)
O20.0232 (2)0.0180 (2)0.01203 (19)0.00396 (17)0.00003 (17)0.00289 (15)
O30.01293 (18)0.01207 (17)0.01232 (18)0.00183 (14)0.00415 (14)0.00262 (13)
O40.0223 (2)0.01282 (19)0.0246 (2)0.00660 (17)0.00808 (19)0.00096 (17)
O50.0171 (2)0.01400 (19)0.0170 (2)0.00069 (15)0.00842 (16)0.00159 (15)
N10.0117 (2)0.01097 (18)0.01199 (19)0.00025 (15)0.00035 (15)0.00063 (15)
N20.0119 (2)0.01108 (19)0.0130 (2)0.00168 (15)0.00410 (15)0.00013 (15)
N30.0144 (2)0.00921 (18)0.0128 (2)0.00074 (15)0.00319 (16)0.00089 (14)
C10.0135 (2)0.0111 (2)0.0128 (2)0.00121 (17)0.00190 (18)0.00083 (17)
C20.0116 (2)0.0103 (2)0.0113 (2)0.00114 (16)0.00109 (17)0.00142 (16)
C30.0096 (2)0.0106 (2)0.0106 (2)0.00110 (16)0.00170 (16)0.00018 (16)
C40.0104 (2)0.0110 (2)0.0113 (2)0.00091 (16)0.00145 (16)0.00006 (16)
C50.0126 (2)0.0122 (2)0.0115 (2)0.00189 (17)0.00177 (17)0.00231 (17)
C60.0096 (2)0.00993 (19)0.0111 (2)0.00013 (16)0.00149 (16)0.00011 (16)
C70.0100 (2)0.00933 (19)0.0112 (2)0.00002 (16)0.00243 (16)0.00026 (16)
C80.0106 (2)0.0112 (2)0.0131 (2)0.00007 (16)0.00020 (17)0.00090 (17)
C90.0124 (2)0.0130 (2)0.0139 (2)0.00026 (17)0.00232 (18)0.00160 (17)
C100.0134 (2)0.0122 (2)0.0162 (2)0.00041 (18)0.00204 (18)0.00224 (18)
C110.0130 (2)0.0128 (2)0.0168 (2)0.00140 (18)0.00108 (19)0.00025 (19)
C120.0151 (3)0.0158 (2)0.0196 (3)0.0021 (2)0.0060 (2)0.0020 (2)
C130.0136 (2)0.0139 (2)0.0176 (3)0.00009 (18)0.0042 (2)0.00289 (19)
C140.0212 (3)0.0142 (2)0.0264 (3)0.0046 (2)0.0058 (2)0.0002 (2)
C150.0218 (3)0.0159 (3)0.0160 (2)0.0006 (2)0.0054 (2)0.0053 (2)
C160.0140 (2)0.0202 (3)0.0120 (2)0.0018 (2)0.00014 (18)0.00042 (19)
C170.0128 (2)0.0109 (2)0.0148 (2)0.00118 (17)0.00253 (18)0.00002 (17)
C180.0108 (2)0.0098 (2)0.0122 (2)0.00062 (16)0.00179 (16)0.00023 (16)
C190.0202 (3)0.0163 (3)0.0197 (3)0.0048 (2)0.0108 (2)0.0017 (2)
C200.0205 (3)0.0109 (2)0.0177 (3)0.00067 (19)0.0043 (2)0.00368 (19)
C210.0147 (2)0.0179 (3)0.0153 (2)0.0050 (2)0.00301 (19)0.0024 (2)
C220.0132 (3)0.0310 (4)0.0163 (3)0.0044 (2)0.0041 (2)0.0025 (2)
Geometric parameters (Å, º) top
S1—O21.4348 (6)C8—C131.3954 (9)
S1—O11.4376 (6)C9—C101.3914 (9)
S1—N11.6271 (6)C9—H90.93
S1—C81.7665 (6)C10—C111.3992 (9)
O3—C61.3391 (7)C10—H100.93
O3—C51.4811 (8)C11—C121.4003 (10)
O4—C171.2262 (8)C11—C141.5068 (9)
O5—C181.2326 (7)C12—C131.3912 (9)
N1—C11.4783 (8)C12—H120.93
N1—C41.4917 (8)C13—H130.93
N2—C61.3790 (8)C14—H14A0.96
N2—C171.3867 (8)C14—H14B0.96
N2—C191.4666 (8)C14—H14C0.96
N3—C171.3787 (8)C15—H15A0.96
N3—C181.4026 (8)C15—H15B0.96
N3—C201.4669 (8)C15—H15C0.96
C1—C21.5357 (9)C16—H16A0.96
C1—H1A0.97C16—H16B0.96
C1—H1B0.97C16—H16C0.96
C2—C51.5277 (9)C19—H19A0.96
C2—C31.5377 (8)C19—H19B0.96
C2—H20.98C19—H19C0.96
C3—C71.5091 (8)C20—H20A0.96
C3—C41.5455 (8)C20—H20B0.96
C3—H30.98C20—H20C0.96
C4—C211.5285 (9)C21—C221.5273 (11)
C4—H40.98C21—H21A0.97
C5—C151.5185 (9)C21—H21B0.97
C5—C161.5236 (9)C22—H22A0.96
C6—C71.3627 (8)C22—H22B0.96
C7—C181.4405 (8)C22—H22C0.96
C8—C91.3940 (9)
O2—S1—O1120.86 (3)C9—C10—H10119.5
O2—S1—N1107.07 (3)C11—C10—H10119.5
O1—S1—N1106.28 (3)C10—C11—C12118.52 (6)
O2—S1—C8107.01 (3)C10—C11—C14120.40 (6)
O1—S1—C8107.69 (3)C12—C11—C14121.08 (6)
N1—S1—C8107.27 (3)C13—C12—C11121.05 (6)
C6—O3—C5116.05 (5)C13—C12—H12119.5
C1—N1—C4112.02 (5)C11—C12—H12119.5
C1—N1—S1118.22 (4)C12—C13—C8119.44 (6)
C4—N1—S1118.29 (4)C12—C13—H13120.3
C6—N2—C17121.36 (5)C8—C13—H13120.3
C6—N2—C19121.55 (5)C11—C14—H14A109.5
C17—N2—C19117.06 (5)C11—C14—H14B109.5
C17—N3—C18124.43 (5)H14A—C14—H14B109.5
C17—N3—C20116.67 (5)C11—C14—H14C109.5
C18—N3—C20118.85 (5)H14A—C14—H14C109.5
N1—C1—C2102.97 (5)H14B—C14—H14C109.5
N1—C1—H1A111.2C5—C15—H15A109.5
C2—C1—H1A111.2C5—C15—H15B109.5
N1—C1—H1B111.2H15A—C15—H15B109.5
C2—C1—H1B111.2C5—C15—H15C109.5
H1A—C1—H1B109.1H15A—C15—H15C109.5
C5—C2—C1113.53 (5)H15B—C15—H15C109.5
C5—C2—C3112.41 (5)C5—C16—H16A109.5
C1—C2—C3103.53 (5)C5—C16—H16B109.5
C5—C2—H2109.1H16A—C16—H16B109.5
C1—C2—H2109.1C5—C16—H16C109.5
C3—C2—H2109.1H16A—C16—H16C109.5
C7—C3—C2109.20 (5)H16B—C16—H16C109.5
C7—C3—C4112.71 (5)O4—C17—N3122.21 (6)
C2—C3—C4103.22 (5)O4—C17—N2121.22 (6)
C7—C3—H3110.5N3—C17—N2116.56 (5)
C2—C3—H3110.5O5—C18—N3120.03 (5)
C4—C3—H3110.5O5—C18—C7123.51 (5)
N1—C4—C21110.21 (5)N3—C18—C7116.46 (5)
N1—C4—C3103.29 (5)N2—C19—H19A109.5
C21—C4—C3113.77 (5)N2—C19—H19B109.5
N1—C4—H4109.8H19A—C19—H19B109.5
C21—C4—H4109.8N2—C19—H19C109.5
C3—C4—H4109.8H19A—C19—H19C109.5
O3—C5—C15104.54 (5)H19B—C19—H19C109.5
O3—C5—C16107.92 (5)N3—C20—H20A109.5
C15—C5—C16111.16 (5)N3—C20—H20B109.5
O3—C5—C2108.51 (5)H20A—C20—H20B109.5
C15—C5—C2112.29 (5)N3—C20—H20C109.5
C16—C5—C2112.02 (5)H20A—C20—H20C109.5
O3—C6—C7125.30 (5)H20B—C20—H20C109.5
O3—C6—N2112.40 (5)C22—C21—C4112.69 (6)
C7—C6—N2122.30 (5)C22—C21—H21A109.1
C6—C7—C18118.58 (5)C4—C21—H21A109.1
C6—C7—C3121.95 (5)C22—C21—H21B109.1
C18—C7—C3119.43 (5)C4—C21—H21B109.1
C9—C8—C13120.45 (6)H21A—C21—H21B107.8
C9—C8—S1118.99 (5)C21—C22—H22A109.5
C13—C8—S1120.56 (5)C21—C22—H22B109.5
C10—C9—C8119.49 (6)H22A—C22—H22B109.5
C10—C9—H9120.3C21—C22—H22C109.5
C8—C9—H9120.3H22A—C22—H22C109.5
C9—C10—C11121.05 (6)H22B—C22—H22C109.5
O2—S1—N1—C1172.18 (4)N2—C6—C7—C3176.56 (5)
O1—S1—N1—C141.74 (5)C2—C3—C7—C610.74 (8)
C8—S1—N1—C173.25 (5)C4—C3—C7—C6124.84 (6)
O2—S1—N1—C447.28 (5)C2—C3—C7—C18171.67 (5)
O1—S1—N1—C4177.72 (5)C4—C3—C7—C1857.57 (7)
C8—S1—N1—C467.29 (5)O2—S1—C8—C921.57 (6)
C4—N1—C1—C215.62 (6)O1—S1—C8—C9152.92 (5)
S1—N1—C1—C2158.49 (4)N1—S1—C8—C993.05 (5)
N1—C1—C2—C5155.54 (5)O2—S1—C8—C13158.55 (5)
N1—C1—C2—C333.37 (6)O1—S1—C8—C1327.20 (6)
C5—C2—C3—C741.74 (6)N1—S1—C8—C1386.83 (6)
C1—C2—C3—C781.18 (5)C13—C8—C9—C100.94 (9)
C5—C2—C3—C4161.86 (5)S1—C8—C9—C10178.93 (5)
C1—C2—C3—C438.94 (6)C8—C9—C10—C110.98 (10)
C1—N1—C4—C21113.51 (6)C9—C10—C11—C120.55 (10)
S1—N1—C4—C21103.65 (5)C9—C10—C11—C14178.68 (6)
C1—N1—C4—C38.38 (6)C10—C11—C12—C130.07 (10)
S1—N1—C4—C3134.46 (4)C14—C11—C12—C13179.16 (7)
C7—C3—C4—N188.77 (5)C11—C12—C13—C80.04 (11)
C2—C3—C4—N128.91 (6)C9—C8—C13—C120.48 (10)
C7—C3—C4—C21151.76 (5)S1—C8—C13—C12179.40 (5)
C2—C3—C4—C2190.56 (6)C18—N3—C17—O4177.65 (6)
C6—O3—C5—C15165.61 (5)C20—N3—C17—O40.07 (10)
C6—O3—C5—C1675.98 (6)C18—N3—C17—N20.78 (9)
C6—O3—C5—C245.61 (7)C20—N3—C17—N2178.35 (6)
C1—C2—C5—O357.44 (6)C6—N2—C17—O4178.74 (6)
C3—C2—C5—O359.67 (6)C19—N2—C17—O40.17 (10)
C1—C2—C5—C1557.61 (7)C6—N2—C17—N30.30 (9)
C3—C2—C5—C15174.72 (5)C19—N2—C17—N3178.27 (6)
C1—C2—C5—C16176.47 (5)C17—N3—C18—O5175.47 (6)
C3—C2—C5—C1659.37 (7)C20—N3—C18—O52.06 (9)
C5—O3—C6—C715.49 (8)C17—N3—C18—C74.13 (9)
C5—O3—C6—N2164.75 (5)C20—N3—C18—C7178.34 (6)
C17—N2—C6—O3177.85 (5)C6—C7—C18—O5173.12 (6)
C19—N2—C6—O30.65 (8)C3—C7—C18—O54.56 (9)
C17—N2—C6—C72.38 (9)C6—C7—C18—N36.47 (8)
C19—N2—C6—C7179.12 (6)C3—C7—C18—N3175.86 (5)
O3—C6—C7—C18174.43 (6)N1—C4—C21—C22171.35 (5)
N2—C6—C7—C185.82 (9)C3—C4—C21—C2273.20 (7)
O3—C6—C7—C33.19 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.982.433.0422 (8)120
C1—H1B···O4i0.972.543.5072 (8)177
C16—H16B···O5ii0.962.573.3914 (8)144
C19—H19C···O1iii0.962.523.4006 (9)153
C20—H20C···O2iv0.962.513.2335 (8)132
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H29N3O5S
Mr447.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.2140 (2), 9.5681 (2), 16.8256 (3)
β (°) 98.946 (1)
V3)2101.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.59 × 0.46 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.864, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
92335, 10993, 9848
Rint0.026
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.105, 1.08
No. of reflections10993
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.982.433.0422 (8)120
C1—H1B···O4i0.972.543.5072 (8)177
C16—H16B···O5ii0.962.573.3914 (8)144
C19—H19C···O1iii0.962.523.4006 (9)153
C20—H20C···O2iv0.962.513.2335 (8)132
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Footnotes

Working at: Department of Physics, RMK Engineering Collge, RSM Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAbdel Fattah, M. E., Atta, A. H., Abdel Gawad, I. I. & Mina, S. M. (2004). Orient. J. Chem. 20, 257–262.  CAS Google Scholar
First citationBedair, A. H., El-Hady, N. A., El-Latif, A., Fakery, A. H. & El-Agrody, A. M. (2000). Farmaco, 55, 708–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. & El-Agrody, A. M. (2001). Farmaco, 56, 965–973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4434–o4435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationEid, F. A., Abd El-Wahab, A. H., Ali, G. A. & Khafagy, M. M. (2004). Acta Pharm. 54, 13–26.  PubMed CAS Google Scholar
First citationShamroukh, A. H., Zaki, M. E., Morsy, E. M., Abdel-Motti, F. M. & Abdel-Megeid, F. M. (2007). Arch. Pharm. (Weinheim), 340, 236–343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1862-o1863
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds