organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-Bromo-2-[(S)-menth­yl­oxy]-5-oxo-2,5-di­hydro-3-fur­yl}-L-valine

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 13 June 2009; accepted 5 July 2009; online 11 July 2009)

The title compound, C19H30BrNO5, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dibromo-5-[(S)-L-menth­yloxy]furan-2(5H)-one and L-valine in the presence of potassium hydroxide. The mol­ecular structure contains an approximately planar (r.m.s. deviation = 0.0204 Å) five-membered furan­one ring and a six-membered menth­yloxy ring adopting a chair conformation. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonding.

Related literature

For applications of chiral 5-(L-menth­yloxy)-2(5H)-furan­ones, see: Feringa & De Jong (1988[Feringa, B. L. & De Jong, J. C. (1988). J. Org. Chem. 53, 125-127.]); De Koning et al. (1997[De Koning, C. B., Hancock, R. D. & Van Otterlo, W. A. L. (1997). Tetrahedron Lett. 8, 1261-1264.]); Lattmann et al. (1999[Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243-250.]); He et al. (2006[He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464-467.]); Wang et al. (2006[Wang, J.-P., Chen, X.-X. & Chen, Q.-H. (2006). Acta Chim. Sin. 64, 686-690.]). For biologically active 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]). For related compounds, see: Wang et al. (2006[Wang, J.-P., Chen, X.-X. & Chen, Q.-H. (2006). Acta Chim. Sin. 64, 686-690.]); Li et al. (2009[Li, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030.]). For the synthesis, see: Chen & Geng (1993[Chen, Q.-H. & Geng, Z. (1993). Acta Chim. Sin. 51, 622-624.]).

[Scheme 1]

Experimental

Crystal data
  • C19H30BrNO5

  • Mr = 432.34

  • Tetragonal, P 43 21 2

  • a = 10.5409 (9) Å

  • c = 39.388 (7) Å

  • V = 4376.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.558, Tmax = 0.710

  • 22304 measured reflections

  • 3859 independent reflections

  • 2726 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.085

  • S = 1.03

  • 3859 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1526 Friedel pairs

  • Flack parameter: −0.001 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 2.28 3.047 (4) 149
O4—H4⋯O2ii 0.82 1.83 2.615 (3) 160
Symmetry codes: (i) y-1, x+1, -z; (ii) [-y+{\script{3\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral 5-(l-menthyloxy)-2(5H)-furanones have been utilized as key building blocks in the synthesis of supramolecules and important natural products since 1980's (Feringa & De Jong, 1988; De Koning et al., 1997; Lattmann et al., 1999), especially in asymmetric synthesis (He et al., 2006; Wang et al., 2006). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008). Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with chiral synthon 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone and L-valine in the present of potassium hydroxide via the tandem asymmetric Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product and excellent ligand.

The structure of the title compound is illustrated in Fig. 1. The title compound which has five chiral centers (C2(S), C8(S), C9(R), C10(S), C14(R)) contains a five-membered furanone ring and a six-membered menthyloxy ring connected each other via C8—O3—C9 ether bond. The furanone ring is approximately planar, whereas the cyclohexane ring displays a chair conformation with three substituents occupying equatorial positions. The bond lengths and angles in the title compound are good agreement with the expected values (Wang et al., 2006; Li et al., 2009). In the crystal structure the molecules are linked by intermolecular hydrogen bonds (Table 1).

Related literature top

Fro applications of chiral 5-(l-menthyloxy)-2(5H)-furanones, see: Feringa & De Jong (1988); De Koning et al. (1997); Lattmann et al. (1999); He et al. (2006); Wang et al. (2006). For biologically active 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al., 2008). For related compounds, see: Wang et al. (2006); Li et al. (2009). For the synthesis, see: Chen & Geng (1993).

Experimental top

The precursor 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Chen et al., 1993). An absolute ethanol solution (5 ml) of L-valine (4.5 mmol) and potassium hydroxide (5.8 mmol) was mixed with the dichloromethane solution (6 ml) of 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone (3.0 mmol) under nitrogen atmosphere. The solution was stirred for 24 h at room temperature, and then the solvents were removed under reduced pressure. The solid residual was dissolved in dichloromethane, and pH of the solution was adjusted to 3 with 15% of aqueous HCl solution. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.9186 g (71.1%). Colorless crystals were obtained in acetone solution by slow evaporation.

Refinement top

The carboxyl H and imino H atoms were placed in calculated positions with O—H = 0.82 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were positioned in calculated positions with C—H = 0.97 (methylene) or 0.98 Å (methine), and were refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability level) of the title compound.
N-{4-Bromo-2-[(S)-menthyloxy]-5-oxo-2,5-dihydro-3-furyl}-L-valine top
Crystal data top
C19H30BrNO5Dx = 1.312 Mg m3
Mr = 432.34Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 3973 reflections
Hall symbol: P 4nw 2abwθ = 2.2–19.3°
a = 10.5409 (9) ŵ = 1.91 mm1
c = 39.388 (7) ÅT = 293 K
V = 4376.4 (9) Å3Block, colourless
Z = 80.30 × 0.22 × 0.18 mm
F(000) = 1808.0
Data collection top
Bruker APEXII area-detector
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed tube2726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1112
Tmin = 0.558, Tmax = 0.710k = 129
22304 measured reflectionsl = 4046
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0221P)2 + 1.5196P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3859 reflectionsΔρmax = 0.43 e Å3
241 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack (1983), 1526 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Crystal data top
C19H30BrNO5Z = 8
Mr = 432.34Mo Kα radiation
Tetragonal, P43212µ = 1.91 mm1
a = 10.5409 (9) ÅT = 293 K
c = 39.388 (7) Å0.30 × 0.22 × 0.18 mm
V = 4376.4 (9) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3859 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2726 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.710Rint = 0.065
22304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.43 e Å3
S = 1.03Δρmin = 0.40 e Å3
3859 reflectionsAbsolute structure: Flack (1983), 1526 Friedel pairs
241 parametersAbsolute structure parameter: 0.001 (11)
0 restraints
Special details top

Experimental. Data for (I): [α]20°D = 63.39° (c 0.437, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.830 (3H, d, J = 6.8 Hz, CH3), 0.897–0.933 (7H, m, CH, 2CH3), 0.955–1.047 (8H, m, 2CH3, CH2), 1.316–1.451 (2H, m, 2CH), 1.610–1.708 (2H, m, CH2), 2.102–2.347 (3H, m, CH2, CH), 3.519–3.610 (1H, m, CH), 4.796 (1H, s, NH), 5.160–5.260 (1H, m, CH), 5.720 (1H, s, CH), 10.720 (1H, s, COOH); ESI-MS, m/z (%): Calcd for C19H31BrNO5+([M+H]+): 434.14, Found: 434.16 (95.0).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60721 (4)1.06205 (6)0.066070 (11)0.0784 (2)
C10.3102 (4)1.0150 (4)0.02299 (8)0.0413 (9)
C20.3657 (3)0.9857 (3)0.01146 (8)0.0421 (9)
H20.45031.02400.01260.051*
C30.3802 (4)0.8413 (4)0.01711 (9)0.0599 (12)
H30.39000.82880.04160.072*
C40.4988 (5)0.7874 (5)0.00061 (13)0.105 (2)
H4A0.51380.70320.00900.157*
H4B0.57020.84040.00600.157*
H4C0.48750.78450.02360.157*
C50.3284 (3)1.0733 (3)0.06891 (8)0.0367 (8)
C60.4445 (3)1.0829 (3)0.08348 (8)0.0447 (9)
C70.4303 (4)1.1255 (3)0.11806 (8)0.0457 (9)
C80.2303 (3)1.1000 (4)0.09637 (7)0.0398 (8)
H80.17221.16770.08940.048*
C90.0390 (3)1.0016 (3)0.11682 (8)0.0410 (9)
H90.01031.05970.10260.049*
C100.0201 (4)0.8704 (3)0.11490 (10)0.0522 (11)
H100.02880.81630.13030.063*
C110.0114 (5)0.8091 (4)0.07965 (11)0.0685 (13)
H110.07780.81340.07280.082*
C120.1550 (4)0.8779 (5)0.12957 (12)0.0746 (14)
H12A0.20640.93220.11520.090*
H12B0.19250.79390.12940.090*
C130.1566 (4)0.9290 (5)0.16525 (11)0.0748 (14)
H13A0.11370.86940.18010.090*
H13B0.24380.93610.17280.090*
C140.0928 (4)1.0580 (4)0.16822 (9)0.0602 (11)
H140.14251.11860.15480.072*
C150.0400 (3)1.0516 (4)0.15277 (9)0.0504 (10)
H15A0.07721.13580.15290.061*
H15B0.09290.99720.16670.061*
C160.0907 (5)1.1053 (5)0.20473 (10)0.0854 (15)
H16A0.17601.11920.21240.128*
H16B0.04411.18350.20590.128*
H16C0.05061.04310.21890.128*
C170.2621 (5)0.7689 (5)0.00673 (12)0.0897 (16)
H17A0.25390.77060.01750.134*
H17B0.18890.80780.01690.134*
H17C0.26870.68260.01430.134*
C180.0868 (5)0.8769 (5)0.05239 (12)0.0987 (18)
H18A0.07340.83580.03090.148*
H18B0.05950.96360.05100.148*
H18C0.17540.87430.05800.148*
C190.0465 (6)0.6681 (5)0.08090 (16)0.123 (2)
H19A0.13690.65950.08270.185*
H19B0.00700.62940.10030.185*
H19C0.01750.62710.06060.185*
N10.2878 (3)1.0434 (3)0.03785 (6)0.0450 (7)
H10.20981.05940.03300.054*
O10.3055 (3)1.1382 (2)0.12568 (5)0.0479 (7)
O20.5122 (3)1.1529 (3)0.13854 (6)0.0604 (8)
O30.1660 (2)0.9901 (2)0.10285 (6)0.0429 (6)
O40.3943 (3)0.9922 (4)0.04650 (6)0.0843 (11)
H40.36301.00570.06520.127*
O50.2048 (3)1.0509 (3)0.02793 (6)0.0596 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0465 (2)0.1398 (5)0.0488 (2)0.0113 (3)0.0033 (2)0.0117 (3)
C10.047 (2)0.051 (2)0.0254 (19)0.0110 (19)0.0007 (17)0.0051 (16)
C20.046 (2)0.054 (3)0.0255 (18)0.0083 (18)0.0002 (15)0.0037 (16)
C30.093 (3)0.058 (3)0.029 (2)0.023 (2)0.006 (2)0.0020 (18)
C40.136 (5)0.091 (4)0.087 (4)0.056 (4)0.017 (4)0.007 (3)
C50.050 (2)0.038 (2)0.0221 (18)0.0055 (18)0.0006 (16)0.0007 (15)
C60.052 (2)0.057 (3)0.0252 (17)0.002 (2)0.0005 (17)0.0033 (16)
C70.061 (3)0.050 (2)0.0257 (18)0.010 (2)0.0028 (19)0.0072 (17)
C80.051 (2)0.044 (2)0.0246 (18)0.001 (2)0.0024 (16)0.0045 (18)
C90.042 (2)0.047 (2)0.034 (2)0.004 (2)0.0062 (17)0.0082 (16)
C100.051 (3)0.051 (3)0.054 (2)0.004 (2)0.003 (2)0.0120 (19)
C110.068 (3)0.052 (3)0.086 (4)0.004 (2)0.003 (3)0.018 (2)
C120.060 (3)0.081 (3)0.083 (4)0.016 (3)0.007 (2)0.014 (3)
C130.064 (3)0.098 (4)0.062 (3)0.004 (3)0.018 (2)0.019 (3)
C140.066 (3)0.072 (3)0.043 (2)0.013 (3)0.014 (2)0.014 (2)
C150.058 (2)0.058 (2)0.035 (2)0.000 (2)0.0067 (18)0.0044 (18)
C160.108 (4)0.099 (4)0.049 (3)0.016 (4)0.030 (3)0.006 (3)
C170.132 (5)0.068 (3)0.070 (4)0.016 (3)0.010 (3)0.004 (3)
C180.121 (5)0.114 (4)0.061 (3)0.016 (4)0.021 (3)0.026 (3)
C190.129 (5)0.064 (3)0.177 (6)0.020 (4)0.007 (4)0.038 (4)
N10.0439 (17)0.066 (2)0.0249 (15)0.0106 (16)0.0028 (13)0.0058 (15)
O10.0584 (18)0.0629 (19)0.0225 (12)0.0081 (13)0.0048 (12)0.0114 (12)
O20.070 (2)0.082 (2)0.0288 (14)0.0203 (15)0.0116 (14)0.0017 (13)
O30.0499 (15)0.0424 (16)0.0364 (14)0.0019 (13)0.0063 (12)0.0002 (11)
O40.0685 (19)0.158 (3)0.0264 (14)0.041 (2)0.0074 (14)0.0028 (16)
O50.0627 (19)0.083 (2)0.0334 (15)0.0299 (17)0.0063 (12)0.0061 (14)
Geometric parameters (Å, º) top
Br1—C61.861 (4)C11—C181.515 (6)
C1—O51.190 (4)C11—C191.532 (6)
C1—O41.304 (4)C11—H110.9800
C1—C21.509 (4)C12—C131.505 (6)
C2—N11.458 (4)C12—H12A0.9700
C2—C31.546 (5)C12—H12B0.9700
C2—H20.9800C13—C141.522 (6)
C3—C171.516 (6)C13—H13A0.9700
C3—C41.519 (6)C13—H13B0.9700
C3—H30.9800C14—C161.522 (5)
C4—H4A0.9600C14—C151.528 (5)
C4—H4B0.9600C14—H140.9800
C4—H4C0.9600C15—H15A0.9700
C5—N11.334 (4)C15—H15B0.9700
C5—C61.355 (5)C16—H16A0.9600
C5—C81.523 (4)C16—H16B0.9600
C6—C71.442 (4)C16—H16C0.9600
C7—O21.217 (4)C17—H17A0.9600
C7—O11.356 (4)C17—H17B0.9600
C8—O31.366 (4)C17—H17C0.9600
C8—O11.457 (4)C18—H18A0.9600
C8—H80.9800C18—H18B0.9600
C9—O31.452 (4)C18—H18C0.9600
C9—C151.511 (5)C19—H19A0.9600
C9—C101.518 (5)C19—H19B0.9600
C9—H90.9800C19—H19C0.9600
C10—C111.535 (5)N1—H10.8600
C10—C121.537 (6)O4—H40.8200
C10—H100.9800
O5—C1—O4125.2 (3)C13—C12—C10112.3 (4)
O5—C1—C2125.0 (3)C13—C12—H12A109.1
O4—C1—C2109.7 (3)C10—C12—H12A109.1
N1—C2—C1109.7 (3)C13—C12—H12B109.1
N1—C2—C3111.4 (3)C10—C12—H12B109.1
C1—C2—C3111.7 (3)H12A—C12—H12B107.9
N1—C2—H2108.0C12—C13—C14112.7 (3)
C1—C2—H2108.0C12—C13—H13A109.0
C3—C2—H2108.0C14—C13—H13A109.0
C17—C3—C4111.9 (4)C12—C13—H13B109.0
C17—C3—C2112.0 (4)C14—C13—H13B109.0
C4—C3—C2112.8 (4)H13A—C13—H13B107.8
C17—C3—H3106.5C13—C14—C16111.8 (3)
C4—C3—H3106.5C13—C14—C15109.5 (3)
C2—C3—H3106.5C16—C14—C15112.2 (4)
C3—C4—H4A109.5C13—C14—H14107.7
C3—C4—H4B109.5C16—C14—H14107.7
H4A—C4—H4B109.5C15—C14—H14107.7
C3—C4—H4C109.5C9—C15—C14112.5 (3)
H4A—C4—H4C109.5C9—C15—H15A109.1
H4B—C4—H4C109.5C14—C15—H15A109.1
N1—C5—C6134.1 (3)C9—C15—H15B109.1
N1—C5—C8118.5 (3)C14—C15—H15B109.1
C6—C5—C8107.4 (3)H15A—C15—H15B107.8
C5—C6—C7109.3 (3)C14—C16—H16A109.5
C5—C6—Br1131.9 (2)C14—C16—H16B109.5
C7—C6—Br1118.7 (3)H16A—C16—H16B109.5
O2—C7—O1121.2 (3)C14—C16—H16C109.5
O2—C7—C6128.8 (4)H16A—C16—H16C109.5
O1—C7—C6109.9 (3)H16B—C16—H16C109.5
O3—C8—O1110.9 (3)C3—C17—H17A109.5
O3—C8—C5108.3 (3)C3—C17—H17B109.5
O1—C8—C5104.1 (3)H17A—C17—H17B109.5
O3—C8—H8111.1C3—C17—H17C109.5
O1—C8—H8111.1H17A—C17—H17C109.5
C5—C8—H8111.1H17B—C17—H17C109.5
O3—C9—C15112.2 (3)C11—C18—H18A109.5
O3—C9—C10106.5 (3)C11—C18—H18B109.5
C15—C9—C10111.6 (3)H18A—C18—H18B109.5
O3—C9—H9108.9C11—C18—H18C109.5
C15—C9—H9108.9H18A—C18—H18C109.5
C10—C9—H9108.9H18B—C18—H18C109.5
C9—C10—C11113.9 (3)C11—C19—H19A109.5
C9—C10—C12108.3 (3)C11—C19—H19B109.5
C11—C10—C12114.6 (4)H19A—C19—H19B109.5
C9—C10—H10106.5C11—C19—H19C109.5
C11—C10—H10106.5H19A—C19—H19C109.5
C12—C10—H10106.5H19B—C19—H19C109.5
C18—C11—C19110.7 (4)C5—N1—C2124.9 (3)
C18—C11—C10114.3 (4)C5—N1—H1117.6
C19—C11—C10111.4 (4)C2—N1—H1117.6
C18—C11—H11106.6C7—O1—C8108.9 (2)
C19—C11—H11106.6C8—O3—C9117.2 (2)
C10—C11—H11106.6C1—O4—H4109.5
O5—C1—C2—N117.4 (5)C12—C10—C11—C1860.0 (5)
O4—C1—C2—N1164.1 (3)C9—C10—C11—C19168.0 (4)
O5—C1—C2—C3106.6 (4)C12—C10—C11—C1966.5 (5)
O4—C1—C2—C371.9 (4)C9—C10—C12—C1356.3 (5)
N1—C2—C3—C1776.8 (4)C11—C10—C12—C13175.3 (4)
C1—C2—C3—C1746.2 (4)C10—C12—C13—C1455.7 (5)
N1—C2—C3—C4155.9 (3)C12—C13—C14—C16177.6 (4)
C1—C2—C3—C481.1 (4)C12—C13—C14—C1552.6 (5)
N1—C5—C6—C7177.2 (4)O3—C9—C15—C14177.3 (3)
C8—C5—C6—C75.1 (4)C10—C9—C15—C1457.9 (4)
N1—C5—C6—Br11.8 (6)C13—C14—C15—C953.7 (4)
C8—C5—C6—Br1179.5 (3)C16—C14—C15—C9178.5 (3)
C5—C6—C7—O2174.9 (4)C6—C5—N1—C213.4 (6)
Br1—C6—C7—O21.2 (5)C8—C5—N1—C2164.1 (3)
C5—C6—C7—O12.2 (4)C1—C2—N1—C5156.4 (3)
Br1—C6—C7—O1178.3 (2)C3—C2—N1—C579.5 (4)
N1—C5—C8—O366.1 (4)O2—C7—O1—C8179.3 (3)
C6—C5—C8—O3112.0 (3)C6—C7—O1—C81.9 (4)
N1—C5—C8—O1175.8 (3)O3—C8—O1—C7111.4 (3)
C6—C5—C8—O16.1 (4)C5—C8—O1—C74.8 (4)
O3—C9—C10—C1151.4 (4)O1—C8—O3—C991.0 (3)
C15—C9—C10—C11174.1 (3)C5—C8—O3—C9155.3 (3)
O3—C9—C10—C12179.8 (3)C15—C9—O3—C868.8 (3)
C15—C9—C10—C1257.1 (4)C10—C9—O3—C8168.9 (3)
C9—C10—C11—C1865.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.283.047 (4)149
O4—H4···O2ii0.821.832.615 (3)160
Symmetry codes: (i) y1, x+1, z; (ii) y+3/2, x+1/2, z1/4.

Experimental details

Crystal data
Chemical formulaC19H30BrNO5
Mr432.34
Crystal system, space groupTetragonal, P43212
Temperature (K)293
a, c (Å)10.5409 (9), 39.388 (7)
V3)4376.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.558, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
22304, 3859, 2726
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 1.03
No. of reflections3859
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.40
Absolute structureFlack (1983), 1526 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.283.047 (4)148.6
O4—H4···O2ii0.821.832.615 (3)159.7
Symmetry codes: (i) y1, x+1, z; (ii) y+3/2, x+1/2, z1/4.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q.-H. & Geng, Z. (1993). Acta Chim. Sin. 51, 622–624.  CAS Google Scholar
First citationDe Koning, C. B., Hancock, R. D. & Van Otterlo, W. A. L. (1997). Tetrahedron Lett. 8, 1261–1264.  CrossRef Google Scholar
First citationFeringa, B. L. & De Jong, J. C. (1988). J. Org. Chem. 53, 125–127.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464–467.  CAS Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243–250.  PubMed CAS Google Scholar
First citationLi, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J.-P., Chen, X.-X. & Chen, Q.-H. (2006). Acta Chim. Sin. 64, 686–690.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds