supplementary materials


Acta Cryst. (2009). E65, o2087    [ doi:10.1107/S1600536809030256 ]

4-(Benzylideneamino)benzenesulfonamide

B. T. Loughrey, M. L. Williams and P. C. Healy

Abstract top

The title compound, C13H12N2O2S, formed by Schiff base condensation of benzaldehyde with sulfanilamide, crystallizes as discrete molecular species linked by N-H...N and N-H...O hydrogen bonds between the sulfamide nitrogen H atoms and the azamethine N and one sulfamide O atom, respectively, forming a two-dimensional array in the bc plane. The azamethine group is rotated slightly out of the benzaldehyde benzene plane [C-C-C-N torsion angle = 8.1 (3)°], while the dihedral angle between the two benzene rings is 30.0 (1)°.

Comment top

Condensation of substituted benzaldehydes with sulfanilamide yields a diverse array of Schiff bases which display interesting enzymatic inhibition towards the carbonic anhydrase (CA) isozymes CA I, II and IV (Supuran et al., 1996) and the cyclo-oxogenase (COX) enzymes COX-1 and COX-2 (Lin et al., 2008). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic Cp*Ru(II) arene complexes with these and related benzenesulfonamides [Cp*Ru(R—Ph—SO2NH2)]X (Loughrey et al., 2008, 2009) we have prepared and determined the crystal structure of the title compound (I).

The crystal structure of (I) consists of discrete molecules (Fig. 1) with bond lengths in the normal range expected for this class of compound (Chumakov et al., 2006; Subashini et al., 2009). The –CH=N– azomethine group is rotated slightly out of the plane of the benzaldehyde benzene ring with the torsion angle C43—C42—C41—N4 = 8.1 (3)°. The dihedral angle between the two benzene rings is 30.0 (1)°. In the crystal lattice, the sulfamide nitrogen protons form N—H···N and N—H···O intermolecular hydrogen bonds with the azamethine nitrogen and the sulfamide oxygen O11 (Table 1, Fig. 2).

Related literature top

Condensation of substituted benzaldehydes with sulfanilamide yields a diverse array of Schiff bases which display interesting enzymatic inhibition, see Supuran et al. (1996); Lin et al. (2008). For our ongoing studies on the synthesis, structures and biological activity of organometallic Cp*Ru(II) arene complexes Loughrey et al. (2008, 2009). For related structures, see Chumakov et al. (2006); Subashini et al. (2009).

Experimental top

Compound (I) was prepared according to established procedures (Lin et al., 2008). Sulfanilamide (1.0 g, 5.81 mmol) was dissolved in a minimum quantity of ethanol and the resulting solution heated to reflux. Benzaldehyde (0.59 ml, 5.81 mmol) was added dropwise over a period of 5 minutes, during which time a fine white precipitate started to form. The mixture was heated at reflux for a further 3 h, after which the solvent was cooled and concentrated in vacuo. The resulting white, crystalline precipitate was filtered and washed with cold ethanol. Yield = 1.47 g, 97%. M.p. 462–465 K. NMR 1H (d6 DMSO), δ 7.35 (br s, 2H, NH2), 7.37 - 7.40 (m, 2H, C6H4 ortho), 7.51 - 7.57 (m, 3H, C6H5 meta, para), 7.84 - 7.87 (m, 2H, C6H4 meta), 7.94 - 7.97 (m, 2H, C6H5 ortho), 8.64 (s, 1H, CH=N). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone solution of (I).

Refinement top

H atoms attached to carbon were constrained as riding atoms with C–H set to 0.95 Å, and with Uiso(H) values set to 1.2Ueq of the parent atom. The N protons were located in Fourier difference maps and constrained as riding atoms with N–H set to 0.86 - 0.87 Å, and with Uiso(H) values set to 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), with atom labels and 40% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding interactions (dashed lines) for (I) leading a 2D array in the bc plane, viewed down the a axis.
4-(Benzylideneamino)benzenesulfonamide top
Crystal data top
C13H12N2O2SF(000) = 544
Mr = 260.32Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 6065 reflections
a = 14.5206 (8) Åθ = 3.2–32.1°
b = 11.4992 (6) ŵ = 0.25 mm1
c = 7.7846 (5) ÅT = 296 K
β = 103.287 (6)°Block, colourless
V = 1265.04 (13) Å30.43 × 0.31 × 0.20 mm
Z = 4
Data collection top
Oxford-Diffraction Gemini S Ultra
diffractometer
2253 independent reflections
Radiation source: Enhance (Mo) X-ray Source1928 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 16.0774 pixels mm-1θmax = 25.2°, θmin = 3.2°
ω and φ scansh = 1716
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.900, Tmax = 0.952l = 79
8991 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.369P]
where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H12N2O2SV = 1265.04 (13) Å3
Mr = 260.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5206 (8) ŵ = 0.25 mm1
b = 11.4992 (6) ÅT = 296 K
c = 7.7846 (5) Å0.43 × 0.31 × 0.20 mm
β = 103.287 (6)°
Data collection top
Oxford-Diffraction Gemini S Ultra
diffractometer
2253 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1928 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.952Rint = 0.018
8991 measured reflectionsθmax = 25.2°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.27 e Å3
S = 1.05Δρmin = 0.24 e Å3
2253 reflectionsAbsolute structure: ?
163 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.32 (release 27-01-2009 CrysAlis171 .NET) (compiled Jan 27 2009,14:17:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.18567 (3)0.37673 (4)0.30521 (6)0.0398 (1)
O111.21041 (8)0.26127 (11)0.26279 (18)0.0556 (5)
O121.19451 (9)0.47053 (13)0.19034 (18)0.0621 (5)
N11.25128 (9)0.40557 (11)0.49616 (19)0.0418 (4)
N40.78277 (9)0.36050 (11)0.36083 (18)0.0389 (4)
C11.06568 (11)0.37128 (13)0.3201 (2)0.0345 (5)
C21.00490 (12)0.46245 (14)0.2581 (2)0.0420 (5)
C30.91150 (11)0.45702 (14)0.2709 (2)0.0431 (5)
C40.87847 (11)0.36039 (13)0.3457 (2)0.0350 (5)
C50.94078 (11)0.26993 (14)0.4104 (2)0.0383 (5)
C61.03363 (11)0.27468 (13)0.3960 (2)0.0380 (5)
C410.73681 (11)0.26550 (14)0.3389 (2)0.0409 (5)
C420.63915 (11)0.25305 (14)0.3574 (2)0.0405 (5)
C430.58382 (13)0.34722 (17)0.3798 (3)0.0584 (7)
C440.49211 (14)0.3309 (2)0.3954 (3)0.0685 (8)
C450.45425 (13)0.2225 (2)0.3881 (3)0.0638 (8)
C460.50775 (16)0.1288 (2)0.3660 (4)0.0746 (9)
C470.60028 (14)0.14359 (17)0.3505 (3)0.0629 (7)
H21.027300.528700.207000.0500*
H30.869800.519600.228300.0520*
H50.919100.204600.464800.0460*
H61.075500.212100.437900.0450*
H111.235000.471500.532200.0480*
H121.243800.352100.570000.0480*
H410.767600.198600.308800.0490*
H430.609200.423600.384500.0700*
H440.454900.396200.411600.0820*
H450.390800.212200.398200.0760*
H460.481500.052900.361200.0900*
H470.637000.077700.335100.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (2)0.0436 (2)0.0465 (3)0.0013 (2)0.0148 (2)0.0021 (2)
O110.0422 (7)0.0583 (8)0.0686 (9)0.0029 (6)0.0177 (6)0.0237 (7)
O120.0473 (7)0.0774 (9)0.0668 (9)0.0024 (6)0.0241 (6)0.0241 (7)
N10.0351 (7)0.0369 (7)0.0540 (9)0.0028 (6)0.0118 (6)0.0050 (6)
N40.0323 (7)0.0386 (7)0.0470 (8)0.0007 (6)0.0119 (6)0.0024 (6)
C10.0308 (8)0.0361 (8)0.0373 (8)0.0016 (6)0.0095 (6)0.0039 (7)
C20.0416 (9)0.0326 (8)0.0550 (10)0.0002 (7)0.0176 (8)0.0056 (7)
C30.0383 (9)0.0348 (8)0.0579 (11)0.0064 (7)0.0143 (8)0.0051 (8)
C40.0320 (8)0.0354 (8)0.0385 (8)0.0003 (6)0.0102 (6)0.0055 (7)
C50.0367 (8)0.0343 (8)0.0446 (9)0.0019 (6)0.0109 (7)0.0041 (7)
C60.0336 (8)0.0347 (8)0.0443 (9)0.0027 (6)0.0064 (7)0.0031 (7)
C410.0359 (9)0.0387 (9)0.0488 (9)0.0015 (7)0.0112 (7)0.0055 (7)
C420.0335 (8)0.0430 (9)0.0453 (9)0.0030 (7)0.0097 (7)0.0031 (7)
C430.0378 (10)0.0477 (10)0.0915 (15)0.0012 (8)0.0188 (10)0.0052 (10)
C440.0394 (11)0.0706 (14)0.0988 (17)0.0055 (10)0.0226 (11)0.0102 (13)
C450.0366 (10)0.0868 (16)0.0701 (14)0.0095 (10)0.0169 (9)0.0023 (12)
C460.0548 (13)0.0639 (14)0.1079 (19)0.0227 (11)0.0245 (13)0.0024 (13)
C470.0462 (11)0.0489 (11)0.0965 (16)0.0058 (9)0.0225 (11)0.0086 (11)
Geometric parameters (Å, °) top
S1—O111.4337 (13)C42—C431.383 (3)
S1—O121.4256 (15)C43—C441.378 (3)
S1—N11.6051 (15)C44—C451.358 (3)
S1—C11.7737 (17)C45—C461.362 (3)
N4—C41.421 (2)C46—C471.387 (3)
N4—C411.271 (2)C2—H20.9500
N1—H120.8700C3—H30.9500
N1—H110.8600C5—H50.9500
C1—C61.388 (2)C6—H60.9500
C1—C21.384 (2)C41—H410.9500
C2—C31.384 (2)C43—H430.9500
C3—C41.390 (2)C44—H440.9500
C4—C51.395 (2)C45—H450.9500
C5—C61.379 (2)C46—H460.9500
C41—C421.465 (2)C47—H470.9500
C42—C471.375 (3)
S1···H6i3.1100H2···C5iii2.9900
O11···C6i3.398 (2)H2···C6iii3.0200
O11···N1i2.9845 (19)H5···C412.7000
O11···H45ii2.6500H5···H412.2600
O11···H62.6900H5···C2v3.0200
O11···H6i2.8400H5···C3v3.0400
O11···H12i2.1300H6···O112.6900
O12···H22.5500H6···S1v3.1100
O12···H41iii2.6800H6···O11v2.8400
O12···H47iii2.7900H11···N4iv2.1400
N1···N4iv2.9955 (18)H11···C3iv3.0100
N1···O11v2.9845 (19)H11···C4iv2.8400
N4···N1iv2.9955 (18)H11···H43iv2.5100
N1···H43iv2.8200H12···O11v2.1300
N4···H432.6700H41···C52.5900
N4···H11iv2.1400H41···H52.2600
C6···O11v3.398 (2)H41···H472.4000
C44···C47v3.542 (3)H41···O12vi2.6800
C47···C44i3.542 (3)H43···N42.6700
C2···H5i3.0200H43···H46vii2.5400
C3···H11iv3.0100H43···N1iv2.8200
C3···H5i3.0400H43···H11iv2.5100
C4···H11iv2.8400H45···O11ix2.6500
C5···H2vi2.9900H46···C43x3.0300
C5···H412.5900H46···H43x2.5400
C6···H2vi3.0200H46···C46viii2.9600
C41···H52.7000H46···H46viii2.4300
C43···H46vii3.0300H47···H412.4000
C46···H46viii2.9600H47···O12vi2.7900
H2···O122.5500
O11—S1—O12119.52 (8)C43—C44—C45120.8 (2)
O11—S1—N1106.13 (8)C44—C45—C46119.6 (2)
O11—S1—C1106.51 (7)C45—C46—C47120.4 (2)
O12—S1—N1107.74 (8)C42—C47—C46120.39 (19)
O12—S1—C1107.41 (8)C1—C2—H2120.00
N1—S1—C1109.25 (7)C3—C2—H2120.00
C4—N4—C41118.77 (13)C2—C3—H3120.00
H11—N1—H12109.00C4—C3—H3120.00
S1—N1—H11110.00C4—C5—H5120.00
S1—N1—H12109.00C6—C5—H5120.00
S1—C1—C2120.51 (12)C1—C6—H6120.00
S1—C1—C6119.12 (12)C5—C6—H6120.00
C2—C1—C6120.36 (15)N4—C41—H41118.00
C1—C2—C3119.85 (15)C42—C41—H41118.00
C2—C3—C4120.29 (15)C42—C43—H43120.00
C3—C4—C5119.33 (15)C44—C43—H43120.00
N4—C4—C5122.43 (14)C43—C44—H44120.00
N4—C4—C3118.17 (14)C45—C44—H44120.00
C4—C5—C6120.41 (15)C44—C45—H45120.00
C1—C6—C5119.73 (15)C46—C45—H45120.00
N4—C41—C42124.13 (15)C45—C46—H46120.00
C41—C42—C43122.64 (15)C47—C46—H46120.00
C41—C42—C47118.91 (16)C42—C47—H47120.00
C43—C42—C47118.45 (17)C46—C47—H47120.00
C42—C43—C44120.38 (18)
O11—S1—C1—C2141.95 (13)C2—C3—C4—C51.1 (2)
O11—S1—C1—C638.53 (15)N4—C4—C5—C6178.65 (14)
O12—S1—C1—C212.78 (15)C3—C4—C5—C61.8 (2)
O12—S1—C1—C6167.69 (13)C4—C5—C6—C11.4 (2)
N1—S1—C1—C2103.82 (13)N4—C41—C42—C438.1 (3)
N1—S1—C1—C675.71 (14)N4—C41—C42—C47172.62 (17)
C41—N4—C4—C3143.94 (15)C41—C42—C43—C44179.57 (18)
C41—N4—C4—C539.2 (2)C47—C42—C43—C440.3 (3)
C4—N4—C41—C42177.62 (14)C41—C42—C47—C46179.4 (2)
S1—C1—C2—C3179.89 (12)C43—C42—C47—C460.1 (3)
C6—C1—C2—C30.4 (2)C42—C43—C44—C450.4 (3)
S1—C1—C6—C5179.21 (12)C43—C44—C45—C460.3 (4)
C2—C1—C6—C50.3 (2)C44—C45—C46—C470.2 (4)
C1—C2—C3—C40.0 (2)C45—C46—C47—C420.1 (4)
C2—C3—C4—N4178.08 (14)
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) x, −y+1/2, z+1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x−1, y, z; (x) −x+1, y−1/2, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N4iv0.862.142.9955 (18)171
N1—H12···O11v0.872.132.9845 (19)171
Symmetry codes: (iv) −x+2, −y+1, −z+1; (v) x, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H11···N4i0.862.142.9955 (18)171
N1—H12···O11ii0.872.132.9845 (19)171
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z+1/2.
Acknowledgements top

We acknowledge support of this work by Griffith University, the Queensland University of Technology and the Eskitis Institute for Cell and Molecular Therapies.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sanches, S. A., Oritz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923–929.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lin, S. J., Tsai, W. J., Chiou, W. F., Yang, T. H. & Yang, L. M. (2008). Bioorg. Med. Chem. 16, 2697–2706.

Loughrey, B. T., Williams, M. L., Healy, P. C., Innocenti, A., Vullo, D., Supuran, C. T., Parsons, P. G. & Poulsen, S.-A. (2009). J. Biol. Inorg. Chem. 14, 935–945.

Loughrey, B. T., Williams, M. L., Poulsen, S.-A. & Healy, P. C. (2008). Acta Cryst. E64, m1568.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Subashini, A., Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2009). J. Chem. Crystallogr. 39, 112–116.

Supuran, C. T., Nicolae, A. & Popescu, A. (1996). Eur. J. Med. Chem. 31, 431–438.