supplementary materials


Acta Cryst. (2009). E65, o2084    [ doi:10.1107/S1600536809030190 ]

2-(4-Bromophenyl)-5-fluoro-3-methylsulfinyl-1-benzofuran

H. D. Choi, P. J. Seo, B. W. Son and U. Lee

Abstract top

In the title compound, C15H10BrFO2S, the O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment. The 4-bromophenyl ring is rotated out of the benzofuran plane [dihedral angle = 38.98 (8)°], while the structure is stabilized by an intermolecular C-H...O hydrogen bond and a Br...O halogen bond [3.036 (2) Å] and has an intermolecular C-H...[pi] interaction between the 4-bromophenyl H atom and the benzene ring of an adjacent benzofuran molecule, as well as aromatic [pi]-[pi] interactions between the benzene rings of the benzofuran systems [centroid-centroid distance = 3.482 (3) Å].

Comment top

Benzofuran derivatives are of considerable interest because of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). This present work is related to our communications on the synthesis and structures of 2-(4-bromophenyl)-3-methylsulfinyl-1-benzofuran analogues, viz. 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound (I) (Fig. 1). The benzofuran unit in (I) is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the planes of the benzofuran and the 4-bromophenyl rings is 38.98 (8) °. The crystal packing (Fig. 2) is stabilized by an intermolecular C–H···O hydrogen bond between the methyl H atom and the SO unit (Table 1) and a Br···O halogen bond [Br···O2iii, 3.036 (2) Å; C–Br···O, 165.46 (7) °] (symmetry code : (iii) x, y-1, z-1) (Politzer et al., 2007). The crystal packing also has an intermolecular C–H···π interaction between a 4-bromophenyl H atom (C13) and the benzene ring of an adjacent molecule [C–H···Cgii] (Table 1), (where Cg is the centroid of the C2-C7 benzene ring). Further stability comes from aromatic ππ interactions between the benzene rings of the adjacent molecules, with a Cg···Cgiv distance of 3.482 (3) Å [symmetry code: (iv) -x + 1, -y + 1, -z + 1].

Related literature top

For the crystal structures of similar 2-(4-bromophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%) (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 2-(4-bromophenyl)-5-fluoro-3-methylsulfanyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography [hexane-ethyl acetate, 1 : 2 (v/v)] to afford the title compound as a colorless solid [yield 81%, m.p. 442-443 K; Rf = 0.68 (hexane-ethyl acetate, 1 : 2 (v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H(aromatic) = 0.93 Å C–H (aliphatic) = 0.96 Å. and with Uiso(H) = 1.2Ueq(C) (aromatic) H atoms and 1.5 Ueq(C) (aliphatic).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. C–H···O, C–Br···O, C–H···π, and ππ interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 2, - y + 2, - z + 1; (ii) - x + 1, - y + 1, - z; (iii) x, y - 1, z - 1; (iv) - x + 1, - y + 1, - z + 1 (v) x, y + 1, z + 1]. For other codes, see Table 1.
2-(4-Bromophenyl)-5-fluoro-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10BrFO2SZ = 2
Mr = 353.20F(000) = 352
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Melting point = 442–443 K
a = 8.6909 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1765 (7) ÅCell parameters from 4045 reflections
c = 10.1308 (8) Åθ = 2.4–27.5°
α = 105.989 (1)°µ = 3.24 mm1
β = 114.811 (1)°T = 293 K
γ = 99.423 (1)°Block, colorless
V = 667.91 (9) Å30.40 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD-detector
diffractometer
2861 independent reflections
Radiation source: fine-focus sealed tube2589 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.4°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.461, Tmax = 0.720l = 1212
5792 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.5235P]
where P = (Fo2 + 2Fc2)/3
2861 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C15H10BrFO2Sγ = 99.423 (1)°
Mr = 353.20V = 667.91 (9) Å3
Triclinic, P1Z = 2
a = 8.6909 (7) ÅMo Kα radiation
b = 9.1765 (7) ŵ = 3.24 mm1
c = 10.1308 (8) ÅT = 293 K
α = 105.989 (1)°0.40 × 0.20 × 0.10 mm
β = 114.811 (1)°
Data collection top
Bruker SMART CCD-detector
diffractometer
2861 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2589 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.720Rint = 0.016
5792 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.56 e Å3
S = 1.05Δρmin = 0.52 e Å3
2861 reflectionsAbsolute structure: ?
182 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.87777 (3)0.07461 (3)0.19442 (3)0.03165 (8)
S0.83195 (6)0.75073 (6)0.37122 (6)0.02170 (11)
F0.27524 (19)0.78610 (17)0.54077 (16)0.0402 (3)
O10.44103 (18)0.34213 (15)0.19174 (16)0.0212 (3)
O20.8984 (2)0.83704 (18)0.54254 (17)0.0315 (3)
C10.6353 (2)0.5929 (2)0.3021 (2)0.0194 (4)
C20.4984 (3)0.5994 (2)0.3476 (2)0.0200 (4)
C30.4642 (3)0.7204 (3)0.4402 (2)0.0249 (4)
H30.53910.82600.49100.030*
C40.3134 (3)0.6731 (3)0.4513 (2)0.0278 (4)
C50.1973 (3)0.5170 (3)0.3795 (3)0.0285 (5)
H50.09690.49350.39140.034*
C60.2324 (3)0.3962 (3)0.2896 (2)0.0262 (4)
H60.15860.29030.24100.031*
C70.3836 (3)0.4430 (2)0.2768 (2)0.0210 (4)
C80.5949 (3)0.4379 (2)0.2100 (2)0.0196 (4)
C90.6748 (2)0.3554 (2)0.1231 (2)0.0194 (4)
C100.6747 (3)0.1994 (2)0.1089 (2)0.0236 (4)
H100.63130.15070.16120.028*
C110.7387 (3)0.1167 (2)0.0176 (2)0.0254 (4)
H110.73860.01300.00830.031*
C120.8029 (3)0.1910 (2)0.0596 (2)0.0219 (4)
C130.8077 (3)0.3461 (2)0.0451 (2)0.0217 (4)
H130.85340.39480.09610.026*
C140.7437 (3)0.4286 (2)0.0465 (2)0.0212 (4)
H140.74660.53300.05700.025*
C150.7267 (3)0.8706 (3)0.2720 (3)0.0310 (5)
H15A0.63310.88800.29500.047*
H15B0.67680.81630.16040.047*
H15C0.81380.97180.30750.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04037 (14)0.03169 (13)0.03461 (13)0.01806 (10)0.02714 (11)0.01103 (10)
S0.0186 (2)0.0212 (2)0.0202 (2)0.00384 (18)0.00880 (19)0.00360 (19)
F0.0428 (8)0.0511 (9)0.0360 (7)0.0286 (7)0.0263 (7)0.0104 (6)
O10.0217 (7)0.0186 (6)0.0234 (7)0.0064 (5)0.0122 (6)0.0062 (5)
O20.0288 (8)0.0312 (8)0.0212 (7)0.0001 (6)0.0108 (6)0.0005 (6)
C10.0179 (9)0.0206 (9)0.0180 (9)0.0065 (7)0.0077 (7)0.0065 (7)
C20.0199 (9)0.0245 (10)0.0172 (9)0.0102 (8)0.0086 (7)0.0093 (8)
C30.0252 (10)0.0266 (10)0.0199 (10)0.0111 (8)0.0098 (8)0.0053 (8)
C40.0306 (11)0.0392 (12)0.0200 (10)0.0220 (10)0.0137 (9)0.0119 (9)
C50.0233 (10)0.0449 (13)0.0281 (11)0.0186 (9)0.0150 (9)0.0206 (10)
C60.0221 (10)0.0327 (11)0.0276 (10)0.0097 (8)0.0123 (9)0.0160 (9)
C70.0220 (10)0.0253 (10)0.0183 (9)0.0119 (8)0.0096 (8)0.0098 (8)
C80.0192 (9)0.0215 (9)0.0185 (9)0.0068 (7)0.0088 (7)0.0087 (7)
C90.0186 (9)0.0206 (9)0.0165 (9)0.0070 (7)0.0075 (7)0.0053 (7)
C100.0266 (10)0.0231 (10)0.0253 (10)0.0082 (8)0.0153 (9)0.0106 (8)
C110.0298 (11)0.0204 (9)0.0299 (11)0.0106 (8)0.0170 (9)0.0095 (8)
C120.0208 (9)0.0246 (10)0.0199 (9)0.0096 (8)0.0112 (8)0.0050 (8)
C130.0210 (9)0.0238 (10)0.0183 (9)0.0046 (8)0.0095 (8)0.0072 (8)
C140.0229 (10)0.0175 (9)0.0196 (9)0.0060 (7)0.0084 (8)0.0057 (7)
C150.0287 (11)0.0232 (10)0.0358 (12)0.0059 (9)0.0115 (10)0.0121 (9)
Geometric parameters (Å, °) top
Br—C121.897 (2)C6—C71.384 (3)
Br—O2i3.036 (2)C6—H60.9300
S—C11.771 (2)C8—C91.466 (3)
S—C151.796 (2)C9—C141.398 (3)
F—C41.361 (2)C9—C101.398 (3)
O1—C81.383 (2)C10—C111.388 (3)
O1—C71.386 (2)C10—H100.9300
C1—C81.359 (3)C11—C121.387 (3)
C1—C21.449 (3)C11—H110.9300
C2—C71.391 (3)C12—C131.382 (3)
C2—C31.404 (3)C13—C141.388 (3)
C3—C41.373 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.391 (3)C15—H15A0.9600
C5—C61.392 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C12—Br—O2i165.46 (7)C1—C8—C9133.66 (18)
O2—S—C1106.07 (9)O1—C8—C9115.03 (16)
O2—S—C15107.01 (10)C14—C9—C10119.19 (18)
C1—S—C1597.48 (10)C14—C9—C8120.39 (17)
C8—O1—C7105.92 (14)C10—C9—C8120.34 (17)
C8—C1—C2106.94 (17)C11—C10—C9120.58 (18)
C8—C1—S125.96 (15)C11—C10—H10119.7
C2—C1—S126.73 (15)C9—C10—H10119.7
C7—C2—C3119.59 (18)C12—C11—C10119.00 (18)
C7—C2—C1105.25 (16)C12—C11—H11120.5
C3—C2—C1135.15 (19)C10—C11—H11120.5
C4—C3—C2115.79 (19)C13—C12—C11121.53 (18)
C4—C3—H3122.1C13—C12—Br119.15 (15)
C2—C3—H3122.1C11—C12—Br119.28 (15)
F—C4—C3117.9 (2)C12—C13—C14119.28 (18)
F—C4—C5117.34 (19)C12—C13—H13120.4
C3—C4—C5124.73 (19)C14—C13—H13120.4
C4—C5—C6119.66 (19)C13—C14—C9120.40 (18)
C4—C5—H5120.2C13—C14—H14119.8
C6—C5—H5120.2C9—C14—H14119.8
C7—C6—C5116.0 (2)S—C15—H15A109.5
C7—C6—H6122.0S—C15—H15B109.5
C5—C6—H6122.0H15A—C15—H15B109.5
C6—C7—O1125.17 (18)S—C15—H15C109.5
C6—C7—C2124.19 (18)H15A—C15—H15C109.5
O1—C7—C2110.64 (16)H15B—C15—H15C109.5
C1—C8—O1111.24 (16)
O2—S—C1—C8132.93 (17)C1—C2—C7—O10.0 (2)
C15—S—C1—C8116.90 (18)C2—C1—C8—O10.0 (2)
O2—S—C1—C239.08 (19)S—C1—C8—O1173.31 (13)
C15—S—C1—C271.09 (18)C2—C1—C8—C9176.90 (19)
C8—C1—C2—C70.0 (2)S—C1—C8—C99.8 (3)
S—C1—C2—C7173.23 (15)C7—O1—C8—C10.0 (2)
C8—C1—C2—C3179.5 (2)C7—O1—C8—C9177.54 (15)
S—C1—C2—C36.3 (3)C1—C8—C9—C1437.8 (3)
C7—C2—C3—C41.2 (3)O1—C8—C9—C14139.07 (18)
C1—C2—C3—C4179.4 (2)C1—C8—C9—C10145.6 (2)
C2—C3—C4—F179.60 (17)O1—C8—C9—C1037.6 (2)
C2—C3—C4—C50.6 (3)C14—C9—C10—C111.3 (3)
F—C4—C5—C6178.56 (18)C8—C9—C10—C11175.46 (18)
C3—C4—C5—C60.4 (3)C9—C10—C11—C120.0 (3)
C4—C5—C6—C70.8 (3)C10—C11—C12—C131.3 (3)
C5—C6—C7—O1179.26 (17)C10—C11—C12—Br176.36 (15)
C5—C6—C7—C20.2 (3)C11—C12—C13—C141.3 (3)
C8—O1—C7—C6179.56 (19)Br—C12—C13—C14176.41 (14)
C8—O1—C7—C20.0 (2)C12—C13—C14—C90.1 (3)
C3—C2—C7—C60.8 (3)C10—C9—C14—C131.3 (3)
C1—C2—C7—C6179.57 (18)C8—C9—C14—C13175.41 (17)
C3—C2—C7—O1179.62 (16)
Symmetry codes: (i) x, y−1, z−1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2ii0.962.363.251 (3)155
C13—H13···Cgiii0.932.743.366 (3)125
Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.962.363.251 (3)155
C13—H13···Cgii0.932.743.366 (3)125
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z.
Acknowledgements top

# No acknowledgements.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.

Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.