supplementary materials


Acta Cryst. (2009). E65, o2520    [ doi:10.1107/S1600536809036290 ]

Bis(4-ethoxyanilinium) sulfate trihydrate

X. Fu

Abstract top

The structure of the title compound, 2C8H12NO+·SO42-·3H2O, consists of organic layers, water molecules and SO42- anions which lie within the organic layers. In the crystal, intermolecular N-H...O, N-H...S O-H...O and O-H...S hydrogen bonds, some of which are bifurcated, stabilize the structure.

Comment top

This study is a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal–organic coordination compounds (Hang et al., 2009) and organic–inorganic hybrid. 4-Ethoxyanilinium perchlorate has no dielectric disuniform from 80 K to 480 K, (m.p. 492–493 K).

The asymmetric unit of the title compound contains two 4-ethoxyanilinium cations, one sulfate radical anion and three water molecules (Fig 1). In the anion, the torsion angles of C1—C2—O5—C3 and C9—C10—O6—C11 are -174.8 (2)° and 179.48 (19)°, respectively. The supramolecular structure consists of infinite chains of anions with one cation and three water molecules linked to each anion via N—H···O and O—H···O hydrogen bonds.

Related literature top

For background to this study, see: Hang et al. (2009); Li et al. (2008).

Experimental top

Single crystals of 4-ethoxyanilinium sulfate are prepared by slow evaporation for five days at room temperature of an ethanol solution of 4-ethoxybenzenamine and sulfuric acid (5 mol l-).

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Bis(4-ethoxyanilinium) sulfate trihydrate top
Crystal data top
2C8H12NO+·SO42·3H2OZ = 2
Mr = 426.48F(000) = 456
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0455 (14) ÅCell parameters from 5008 reflections
b = 10.969 (2) Åθ = 3.0–27.6°
c = 13.787 (3) ŵ = 0.21 mm1
α = 101.40 (3)°T = 298 K
β = 94.53 (3)°Prism, colourless
γ = 90.18 (3)°0.20 × 0.20 × 0.20 mm
V = 1041.0 (4) Å3
Data collection top
Rigaku SCXmini
diffractometer
4748 independent reflections
Radiation source: fine-focus sealed tube3947 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.96, Tmax = 0.96l = 1717
10835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4014P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max = 0.011
277 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
2C8H12NO+·SO42·3H2Oγ = 90.18 (3)°
Mr = 426.48V = 1041.0 (4) Å3
Triclinic, P1Z = 2
a = 7.0455 (14) ÅMo Kα radiation
b = 10.969 (2) ŵ = 0.21 mm1
c = 13.787 (3) ÅT = 298 K
α = 101.40 (3)°0.20 × 0.20 × 0.20 mm
β = 94.53 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4748 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3947 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.96Rint = 0.041
10835 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143Δρmax = 0.30 e Å3
S = 1.10Δρmin = 0.62 e Å3
4748 reflectionsAbsolute structure: ?
277 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.0896 (3)0.6806 (2)0.58350 (17)0.0449 (5)
H10A0.03960.66350.55380.054*
H10B0.12510.76480.57910.054*
C130.1606 (3)0.6525 (2)0.27781 (16)0.0376 (5)
H13A0.09810.70460.24060.045*
C140.2775 (3)0.56205 (18)0.23343 (15)0.0298 (4)
C110.2290 (3)0.5885 (2)0.43338 (15)0.0338 (4)
C160.3460 (3)0.4968 (2)0.38719 (16)0.0405 (5)
H16A0.40830.44400.42380.049*
C120.1355 (3)0.6664 (2)0.37864 (17)0.0394 (5)
H12A0.05640.72760.40890.047*
C150.3701 (3)0.4838 (2)0.28761 (16)0.0383 (5)
H15A0.44870.42240.25700.046*
N20.2998 (2)0.54499 (16)0.12718 (12)0.0323 (4)
H2C0.23250.60160.10200.049*
H2D0.25830.46920.09710.049*
H2E0.42220.55380.11770.049*
O60.2170 (2)0.59385 (16)0.53274 (11)0.0454 (4)
C70.4295 (3)0.1249 (2)0.29676 (16)0.0383 (5)
H7A0.52850.15910.26950.046*
C80.4180 (3)0.1505 (2)0.39883 (16)0.0402 (5)
H8A0.50880.20200.44000.048*
C60.2953 (3)0.04922 (18)0.23606 (14)0.0284 (4)
C30.2702 (3)0.09881 (19)0.43898 (15)0.0329 (4)
C50.1461 (3)0.0017 (2)0.27536 (15)0.0348 (5)
H5A0.05500.05250.23380.042*
C40.1337 (3)0.0235 (2)0.37657 (16)0.0365 (5)
H4A0.03330.01010.40330.044*
N10.3073 (2)0.02291 (16)0.12851 (12)0.0316 (4)
H1D0.40930.06170.11400.047*
H1E0.20310.04970.09910.047*
H1F0.31680.05870.10700.047*
O40.8618 (2)0.76777 (14)1.06802 (12)0.0419 (4)
O30.9964 (2)0.84402 (14)0.93687 (12)0.0411 (4)
O11.2016 (2)0.76811 (14)1.05715 (11)0.0376 (3)
C90.1020 (4)0.6671 (3)0.69069 (18)0.0547 (7)
H9A0.01830.72500.72680.082*
H9B0.23040.68390.71920.082*
H9C0.06510.58390.69420.082*
C20.3919 (3)0.1835 (2)0.60656 (16)0.0435 (5)
H2A0.40210.26880.59760.052*
H2B0.51360.14420.59560.052*
S11.01303 (6)0.75062 (4)0.99930 (3)0.02523 (14)
O21.0005 (2)0.62454 (13)0.93962 (12)0.0415 (4)
O50.2452 (2)0.11746 (16)0.53811 (11)0.0425 (4)
C10.3390 (4)0.1809 (3)0.70955 (17)0.0509 (6)
H1A0.43440.22520.75720.076*
H1B0.33070.09620.71780.076*
H1C0.21810.21950.71950.076*
O7W1.3057 (3)0.4580 (2)0.89486 (15)0.0507 (5)
O8W1.2987 (2)0.98944 (19)0.89593 (15)0.0476 (4)
O9W0.5193 (3)0.7333 (2)0.92324 (17)0.0644 (5)
H7D1.249 (5)0.393 (3)0.893 (2)0.072 (10)*
H8D1.255 (4)1.052 (3)0.899 (2)0.050 (9)*
H7C1.227 (5)0.514 (3)0.900 (2)0.067 (10)*
H9E0.427 (6)0.747 (4)0.968 (3)0.104 (14)*
H8C1.209 (5)0.932 (3)0.899 (2)0.077 (10)*
H9D0.614 (7)0.757 (4)0.985 (3)0.132 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0433 (13)0.0460 (13)0.0452 (13)0.0036 (10)0.0118 (10)0.0049 (10)
C130.0376 (11)0.0343 (11)0.0436 (12)0.0107 (9)0.0059 (9)0.0127 (9)
C140.0276 (9)0.0277 (10)0.0337 (10)0.0022 (7)0.0035 (8)0.0046 (8)
C110.0329 (10)0.0346 (11)0.0332 (10)0.0009 (8)0.0020 (8)0.0052 (8)
C160.0423 (12)0.0400 (12)0.0384 (11)0.0140 (9)0.0019 (9)0.0074 (9)
C120.0380 (11)0.0363 (11)0.0446 (12)0.0119 (9)0.0102 (9)0.0065 (9)
C150.0364 (11)0.0360 (11)0.0406 (11)0.0127 (9)0.0018 (9)0.0033 (9)
N20.0330 (9)0.0299 (9)0.0346 (9)0.0019 (7)0.0048 (7)0.0068 (7)
O60.0510 (10)0.0508 (10)0.0346 (8)0.0146 (8)0.0059 (7)0.0073 (7)
C70.0361 (11)0.0389 (12)0.0402 (11)0.0116 (9)0.0133 (9)0.0047 (9)
C80.0392 (11)0.0429 (12)0.0354 (11)0.0152 (9)0.0078 (9)0.0019 (9)
C60.0299 (9)0.0252 (9)0.0310 (10)0.0029 (7)0.0069 (7)0.0059 (7)
C30.0324 (10)0.0327 (10)0.0335 (10)0.0011 (8)0.0081 (8)0.0045 (8)
C50.0317 (10)0.0363 (11)0.0362 (11)0.0081 (8)0.0022 (8)0.0071 (8)
C40.0309 (10)0.0431 (12)0.0375 (11)0.0099 (9)0.0080 (8)0.0107 (9)
N10.0322 (9)0.0316 (9)0.0319 (9)0.0001 (7)0.0067 (7)0.0068 (7)
O40.0408 (9)0.0383 (9)0.0515 (9)0.0061 (7)0.0238 (7)0.0126 (7)
O30.0387 (8)0.0403 (9)0.0517 (9)0.0021 (6)0.0062 (7)0.0261 (7)
O10.0327 (8)0.0346 (8)0.0450 (9)0.0015 (6)0.0045 (6)0.0098 (6)
C90.0543 (15)0.0663 (17)0.0406 (13)0.0081 (13)0.0121 (11)0.0005 (12)
C20.0406 (12)0.0485 (13)0.0379 (12)0.0098 (10)0.0048 (9)0.0006 (10)
S10.0243 (2)0.0203 (2)0.0323 (3)0.00085 (16)0.00592 (18)0.00655 (17)
O20.0384 (8)0.0265 (8)0.0552 (10)0.0019 (6)0.0070 (7)0.0040 (7)
O50.0378 (8)0.0560 (10)0.0318 (8)0.0121 (7)0.0067 (6)0.0029 (7)
C10.0497 (14)0.0651 (17)0.0361 (12)0.0007 (12)0.0038 (10)0.0052 (11)
O7W0.0384 (9)0.0393 (10)0.0775 (13)0.0026 (8)0.0194 (9)0.0133 (9)
O8W0.0383 (9)0.0386 (10)0.0700 (12)0.0061 (8)0.0199 (8)0.0146 (9)
O9W0.0516 (11)0.0690 (14)0.0738 (14)0.0023 (10)0.0175 (11)0.0121 (11)
Geometric parameters (Å, °) top
C10—O61.430 (3)C3—C41.390 (3)
C10—C91.510 (3)C5—C41.378 (3)
C10—H10A0.9700C5—H5A0.9300
C10—H10B0.9700C4—H4A0.9300
C13—C141.372 (3)N1—H1D0.8900
C13—C121.394 (3)N1—H1E0.8900
C13—H13A0.9300N1—H1F0.8900
C14—C151.378 (3)O4—S11.4693 (15)
C14—N21.461 (3)O3—S11.4621 (15)
C11—O61.369 (3)O1—S11.4861 (15)
C11—C121.383 (3)C9—H9A0.9600
C11—C161.389 (3)C9—H9B0.9600
C16—C151.376 (3)C9—H9C0.9600
C16—H16A0.9300C2—O51.434 (3)
C12—H12A0.9300C2—C11.502 (3)
C15—H15A0.9300C2—H2A0.9700
N2—H2C0.8900C2—H2B0.9700
N2—H2D0.8900S1—O21.4613 (15)
N2—H2E0.8900C1—H1A0.9600
C7—C61.371 (3)C1—H1B0.9600
C7—C81.389 (3)C1—H1C0.9600
C7—H7A0.9300O7W—H7D0.81 (4)
C8—C31.386 (3)O7W—H7C0.83 (4)
C8—H8A0.9300O8W—H8D0.75 (3)
C6—C51.384 (3)O8W—H8C0.90 (4)
C6—N11.463 (2)O9W—H9E0.92 (4)
C3—O51.367 (2)O9W—H9D1.03 (5)
O6—C10—C9107.7 (2)C8—C3—C4119.69 (19)
O6—C10—H10A110.2C4—C5—C6119.50 (19)
C9—C10—H10A110.2C4—C5—H5A120.2
O6—C10—H10B110.2C6—C5—H5A120.2
C9—C10—H10B110.2C5—C4—C3120.39 (19)
H10A—C10—H10B108.5C5—C4—H4A119.8
C14—C13—C12120.0 (2)C3—C4—H4A119.8
C14—C13—H13A120.0C6—N1—H1D109.5
C12—C13—H13A120.0C6—N1—H1E109.5
C13—C14—C15120.56 (19)H1D—N1—H1E109.5
C13—C14—N2120.11 (18)C6—N1—H1F109.5
C15—C14—N2119.29 (18)H1D—N1—H1F109.5
O6—C11—C12124.93 (19)H1E—N1—H1F109.5
O6—C11—C16115.39 (19)C10—C9—H9A109.5
C12—C11—C16119.7 (2)C10—C9—H9B109.5
C15—C16—C11120.4 (2)H9A—C9—H9B109.5
C15—C16—H16A119.8C10—C9—H9C109.5
C11—C16—H16A119.8H9A—C9—H9C109.5
C11—C12—C13119.60 (19)H9B—C9—H9C109.5
C11—C12—H12A120.2O5—C2—C1107.52 (19)
C13—C12—H12A120.2O5—C2—H2A110.2
C16—C15—C14119.79 (19)C1—C2—H2A110.2
C16—C15—H15A120.1O5—C2—H2B110.2
C14—C15—H15A120.1C1—C2—H2B110.2
C14—N2—H2C109.5H2A—C2—H2B108.5
C14—N2—H2D109.5O2—S1—O3111.43 (10)
H2C—N2—H2D109.5O2—S1—O4109.70 (10)
C14—N2—H2E109.5O3—S1—O4109.51 (9)
H2C—N2—H2E109.5O2—S1—O1108.58 (9)
H2D—N2—H2E109.5O3—S1—O1108.27 (9)
C11—O6—C10118.27 (18)O4—S1—O1109.31 (10)
C6—C7—C8120.18 (19)C3—O5—C2118.10 (16)
C6—C7—H7A119.9C2—C1—H1A109.5
C8—C7—H7A119.9C2—C1—H1B109.5
C3—C8—C7119.60 (19)H1A—C1—H1B109.5
C3—C8—H8A120.2C2—C1—H1C109.5
C7—C8—H8A120.2H1A—C1—H1C109.5
C7—C6—C5120.63 (19)H1B—C1—H1C109.5
C7—C6—N1120.03 (17)H7D—O7W—H7C108 (3)
C5—C6—N1119.33 (18)H8D—O8W—H8C111 (3)
O5—C3—C8124.56 (19)H9E—O9W—H9D85 (3)
O5—C3—C4115.74 (18)
C12—C13—C14—C150.4 (3)C6—C7—C8—C30.2 (4)
C12—C13—C14—N2178.24 (19)C8—C7—C6—C50.5 (3)
O6—C11—C16—C15179.3 (2)C8—C7—C6—N1179.7 (2)
C12—C11—C16—C150.4 (3)C7—C8—C3—O5179.9 (2)
O6—C11—C12—C13179.3 (2)C7—C8—C3—C41.0 (4)
C16—C11—C12—C130.4 (3)C7—C6—C5—C40.4 (3)
C14—C13—C12—C110.0 (3)N1—C6—C5—C4179.62 (19)
C11—C16—C15—C140.1 (3)C6—C5—C4—C30.4 (3)
C13—C14—C15—C160.3 (3)O5—C3—C4—C5179.7 (2)
N2—C14—C15—C16178.2 (2)C8—C3—C4—C51.1 (3)
C12—C11—O6—C104.3 (3)C8—C3—O5—C27.2 (3)
C16—C11—O6—C10176.0 (2)C4—C3—O5—C2173.6 (2)
C9—C10—O6—C11179.48 (19)C1—C2—O5—C3174.8 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.052.870 (2)153
N2—H2C···S1i0.892.773.649 (2)172
N2—H2D···O2ii0.892.072.788 (2)137
N2—H2E···O7Wiii0.891.942.819 (3)169
N1—H1D···O8Wiii0.892.142.823 (2)133
N1—H1D···O9Wii0.892.463.166 (3)136
N1—H1E···O3ii0.891.932.785 (2)162
N1—H1F···O1iv0.892.032.849 (2)152
O7W—H7D···O4v0.81 (4)2.11 (4)2.893 (3)163 (3)
O8W—H8D···O4vi0.75 (3)2.12 (3)2.864 (3)172 (3)
O9W—H9E···O1vii0.92 (4)2.07 (4)2.991 (3)175 (4)
O9W—H9E···S1vii0.92 (4)2.98 (4)3.791 (2)147 (3)
O7W—H7C···O20.83 (4)2.05 (4)2.851 (3)164 (3)
O8W—H8C···O30.90 (4)1.94 (4)2.815 (3)164 (3)
O8W—H8C···S10.90 (4)3.02 (4)3.852 (2)154 (3)
O9W—H9D···O41.03 (5)2.00 (5)2.981 (3)158 (4)
O9W—H9D···S11.03 (5)2.81 (5)3.547 (2)129 (3)
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y−1, z−1; (v) −x+2, −y+1, −z+2; (vi) −x+2, −y+2, −z+2; (vii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.052.870 (2)153
N2—H2C···S1i0.892.773.649 (2)172
N2—H2D···O2ii0.892.072.788 (2)137
N2—H2E···O7Wiii0.891.942.819 (3)169
N1—H1D···O8Wiii0.892.142.823 (2)133
N1—H1D···O9Wii0.892.463.166 (3)136
N1—H1E···O3ii0.891.932.785 (2)162
N1—H1F···O1iv0.892.032.849 (2)152
O7W—H7D···O4v0.81 (4)2.11 (4)2.893 (3)163 (3)
O8W—H8D···O4vi0.75 (3)2.12 (3)2.864 (3)172 (3)
O9W—H9E···O1vii0.92 (4)2.07 (4)2.991 (3)175 (4)
O9W—H9E···S1vii0.92 (4)2.98 (4)3.791 (2)147 (3)
O7W—H7C···O20.83 (4)2.05 (4)2.851 (3)164 (3)
O8W—H8C···O30.90 (4)1.94 (4)2.815 (3)164 (3)
O8W—H8C···S10.90 (4)3.02 (4)3.852 (2)154 (3)
O9W—H9D···O41.03 (5)2.00 (5)2.981 (3)158 (4)
O9W—H9D···S11.03 (5)2.81 (5)3.547 (2)129 (3)
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y−1, z−1; (v) −x+2, −y+1, −z+2; (vi) −x+2, −y+2, −z+2; (vii) x−1, y, z.
Acknowledgements top

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

references
References top

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.

Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.