metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(2-amino-3-pyrid­yl)tetra­zolato]copper(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: guomin625@yahoo.com.cn

(Received 12 May 2009; accepted 27 August 2009; online 5 September 2009)

In the centrosymmetric title complex, [Cu(C6H5N6)2], the CuII ion is coordinated by four N atoms from two symmetry-related bidentate 5-(2-amino-3-pyrid­yl)tetra­zolate ligands in a slightly distorted square-planar environment. There are weak intra­molecular N—H⋯N hydrogen bonds between the two ligands. In the crystal structure, there are significant ππ stacking inter­actions between symmetry-related tetra­zole and pyridine rings, with a centroid–centroid distance of 3.6025 (18)°.

Related literature

For the coordination chemistry of tetra­zole compounds, see: Butler (1984[Butler, R. N. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky, pp. 791-838. Amsterdam: Elsevier.]); Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the in situ [2 + 3] cyclo­addition synthesis of tetra­zole coordination polymers, see: Xiong et al. (2002[Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chang, P. W. H., Zhu, J. S., Huang, S. P. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Fu et al. (2008[Fu, D. W., Zhang, W. & Xiong, R. G. (2008). Cryst. Growth Des. 8, 3461-3464.]). For coordination polymers synthesized with similar organic ligand derivatives, see: Ye et al. (2005[Ye, Q., Li, Y. H., Song, Y. M., Huang, X. F., Xiong, R. G. & Xue, Z. L. (2005). Inorg. Chem. 44, 3618-3625.]); Bhandari et al. (2000[Bhandari, S., Hague, C. E., Mahon, M. F. & Molloy, K. C. (2000). J. Chem. Soc. Dalton Trans. pp. 663-669.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H5N6)2]

  • Mr = 385.86

  • Monoclinic, P 21 /c

  • a = 6.6492 (6) Å

  • b = 7.9093 (7) Å

  • c = 13.5581 (12) Å

  • β = 100.692 (2)°

  • V = 700.65 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 294 K

  • 0.15 × 0.13 × 0.09 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.797, Tmax = 0.870

  • 3743 measured reflections

  • 1363 independent reflections

  • 1228 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.07

  • 1363 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond angles (°)

N5i—Cu1—N5 180
N5—Cu1—N4 89.03 (10)
N5—Cu1—N4i 90.97 (10)
N4—Cu1—N4i 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N2i 0.90 2.50 2.902 (4) 108
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In situ [2+3] cycloaddition synthesis of tetrazole coordination polymers under hydrothermal conditions has proved to be a fast and convenient route to explore novel coordination polymers with rich structural diversities and potential physical properties, such as second harmonic generation (SGH), ferroelectric and dielectric responses (Xiong et al., 2002; Ye et al., 2006; Fu et al. (2008). The crystal structure of the compound formed by our hydrothermal synthesis is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The CuII ion lies on an inversion center coordinated by four N atoms from two symmetry related bidentate 3-(2-Amino-pyridyl))tetrazolato ligands in a slightly distorted square-planar environment. In the crystal structure, there are significant ππ stacking interactions between symmetry related tetrazole and pyridine rings with a centroid to centroid distance of 3.6025 (18)°.

Related literature top

For the coordination chemistry of tetrazole compounds, see: Butler (1984); Zhao et al. (2008). For the in situ [2+3] cycloaddition synthesis of tetrazole coordination polymers, see: Xiong et al. (2002); Ye et al. (2006); Fu et al. (2008). For coordination polymers synthesized with similar organic ligand derivatives, see: Ye et al. (2005); Bhandari et al. (2000).

Experimental top

The title compound was prepared by hydrothermal treatment of 2-aminonicotinonitrile (2.3 mmol) and Cu(NO3)2 (1.0 mmol) with excess amount of NaN3 in a sealed Pyrex tuble at 403K for 2–4 days. The resulting green rectangular crystals gave a yield of 75% based on Cu(NO3)2.

Refinement top

H atoms were placed in caculated positions with C-H = 0.93 and N-H = 0.90Å and refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Symmetry code: (a) -x+1, -y+1, -z+1. Hydrogen bonds are shown as dashed lines.
Bis[5-(2-amino-3-pyridyl)tetrazolato]copper(II) top
Crystal data top
[Cu(C6H5N6)2]F(000) = 390
Mr = 385.86Dx = 1.829 Mg m3
Monoclinic, P21/cMelting point: 723 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6492 (6) ÅCell parameters from 2942 reflections
b = 7.9093 (7) Åθ = 3.0–27.5°
c = 13.5581 (12) ŵ = 1.59 mm1
β = 100.692 (2)°T = 294 K
V = 700.65 (11) Å3Rectangle, green
Z = 20.15 × 0.13 × 0.09 mm
Data collection top
Rigaku Mercury2
diffractometer
1363 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 89
Tmin = 0.797, Tmax = 0.870l = 1516
3743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0555P)2 + 1.0273P]
where P = (Fo2 + 2Fc2)/3
1363 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Cu(C6H5N6)2]V = 700.65 (11) Å3
Mr = 385.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6492 (6) ŵ = 1.59 mm1
b = 7.9093 (7) ÅT = 294 K
c = 13.5581 (12) Å0.15 × 0.13 × 0.09 mm
β = 100.692 (2)°
Data collection top
Rigaku Mercury2
diffractometer
1363 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1228 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.870Rint = 0.020
3743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.69 e Å3
1363 reflectionsΔρmin = 0.73 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0265 (2)
N61.0060 (4)0.1967 (3)0.61317 (18)0.0302 (6)
C60.7920 (5)0.3986 (4)0.3685 (2)0.0260 (6)
C50.9283 (4)0.3088 (4)0.4476 (2)0.0263 (6)
N40.6177 (4)0.4748 (3)0.37835 (19)0.0294 (6)
C40.8741 (5)0.2899 (4)0.5446 (2)0.0258 (6)
N30.8245 (4)0.4167 (4)0.27476 (19)0.0345 (6)
C31.1079 (5)0.2369 (4)0.4307 (2)0.0322 (7)
H3A1.14390.24970.36800.039*
N20.5399 (4)0.5422 (4)0.2875 (2)0.0365 (6)
C21.2364 (5)0.1461 (4)0.5041 (3)0.0364 (7)
H2A1.35760.09970.49140.044*
C11.1816 (5)0.1263 (4)0.5947 (2)0.0349 (7)
H1A1.26460.06420.64460.042*
N10.6643 (5)0.5072 (4)0.2266 (2)0.0385 (7)
N50.7116 (4)0.3534 (3)0.56979 (17)0.0291 (6)
H5A0.75850.40760.62790.035*
H5B0.64310.26290.58660.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0241 (3)0.0352 (3)0.0227 (3)0.00433 (19)0.0104 (2)0.00138 (19)
N60.0281 (14)0.0330 (14)0.0300 (13)0.0006 (10)0.0068 (11)0.0029 (10)
C60.0267 (15)0.0296 (14)0.0243 (13)0.0035 (11)0.0112 (11)0.0035 (11)
C50.0250 (15)0.0270 (14)0.0292 (15)0.0012 (11)0.0108 (12)0.0019 (11)
N40.0280 (14)0.0395 (14)0.0223 (12)0.0041 (11)0.0087 (10)0.0012 (10)
C40.0239 (15)0.0258 (14)0.0286 (14)0.0029 (11)0.0076 (12)0.0000 (11)
N30.0342 (15)0.0477 (16)0.0248 (12)0.0030 (12)0.0137 (11)0.0019 (11)
C30.0325 (17)0.0347 (16)0.0328 (16)0.0011 (13)0.0151 (13)0.0031 (13)
N20.0353 (16)0.0513 (16)0.0245 (13)0.0073 (13)0.0100 (11)0.0046 (12)
C20.0280 (16)0.0374 (17)0.0464 (18)0.0065 (13)0.0141 (14)0.0028 (14)
C10.0297 (17)0.0334 (16)0.0393 (17)0.0024 (12)0.0002 (13)0.0015 (13)
N10.0365 (17)0.0561 (19)0.0242 (13)0.0054 (12)0.0092 (12)0.0040 (11)
N50.0277 (14)0.0401 (15)0.0229 (11)0.0069 (11)0.0135 (10)0.0056 (10)
Geometric parameters (Å, º) top
Cu1—N5i1.930 (2)N4—N21.354 (4)
Cu1—N51.930 (2)C4—N51.293 (4)
Cu1—N41.963 (2)N3—N11.348 (4)
Cu1—N4i1.963 (2)C3—C21.386 (5)
N6—C11.358 (4)C3—H3A0.9300
N6—C41.369 (4)N2—N11.302 (4)
C6—N41.335 (4)C2—C11.354 (5)
C6—N31.336 (4)C2—H2A0.9300
C6—C51.455 (4)C1—H1A0.9300
C5—C31.380 (4)N5—H5A0.9000
C5—C41.435 (4)N5—H5B0.9000
N5i—Cu1—N5180C6—N3—N1105.3 (2)
N5i—Cu1—N490.97 (10)C5—C3—C2122.1 (3)
N5—Cu1—N489.03 (10)C5—C3—H3A118.9
N5i—Cu1—N4i89.03 (10)C2—C3—H3A118.9
N5—Cu1—N4i90.97 (10)N1—N2—N4108.2 (3)
N4—Cu1—N4i180C1—C2—C3118.5 (3)
C1—N6—C4124.1 (3)C1—C2—H2A120.7
N4—C6—N3110.1 (3)C3—C2—H2A120.7
N4—C6—C5125.5 (3)C2—C1—N6120.3 (3)
N3—C6—C5124.4 (3)C2—C1—H1A119.8
C3—C5—C4118.8 (3)N6—C1—H1A119.8
C3—C5—C6121.3 (3)N2—N1—N3110.1 (3)
C4—C5—C6119.9 (3)C4—N5—Cu1132.2 (2)
C6—N4—N2106.2 (2)C4—N5—H5A104.2
C6—N4—Cu1128.3 (2)Cu1—N5—H5A104.2
N2—N4—Cu1125.5 (2)C4—N5—H5B104.2
N5—C4—N6119.4 (3)Cu1—N5—H5B104.2
N5—C4—C5124.5 (3)H5A—N5—H5B105.5
N6—C4—C5116.1 (3)
N4—C6—C5—C3178.6 (3)C6—C5—C4—N6176.9 (3)
N3—C6—C5—C31.2 (5)N4—C6—N3—N10.1 (3)
N4—C6—C5—C43.1 (4)C5—C6—N3—N1179.8 (3)
N3—C6—C5—C4177.1 (3)C4—C5—C3—C20.5 (5)
N3—C6—N4—N20.1 (4)C6—C5—C3—C2177.8 (3)
C5—C6—N4—N2179.9 (3)C6—N4—N2—N10.2 (4)
N3—C6—N4—Cu1176.5 (2)Cu1—N4—N2—N1176.5 (2)
C5—C6—N4—Cu13.4 (4)C5—C3—C2—C10.8 (5)
N5—Cu1—N4—C67.2 (3)C3—C2—C1—N61.1 (5)
N5—Cu1—N4—N2176.9 (3)C4—N6—C1—C20.1 (5)
C1—N6—C4—N5179.3 (3)N4—N2—N1—N30.2 (4)
C1—N6—C4—C51.2 (4)C6—N3—N1—N20.2 (4)
C3—C5—C4—N5179.0 (3)N6—C4—N5—Cu1175.8 (2)
C6—C5—C4—N52.6 (4)C5—C4—N5—Cu14.7 (5)
C3—C5—C4—N61.4 (4)N4—Cu1—N5—C48.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.902.502.902 (4)108
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C6H5N6)2]
Mr385.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.6492 (6), 7.9093 (7), 13.5581 (12)
β (°) 100.692 (2)
V3)700.65 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.15 × 0.13 × 0.09
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.797, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
3743, 1363, 1228
Rint0.020
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.07
No. of reflections1363
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.73

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
N5i—Cu1—N5180N5—Cu1—N4i90.97 (10)
N5—Cu1—N489.03 (10)N4—Cu1—N4i180
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.902.502.902 (4)107.5
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from SEU.

References

First citationBhandari, S., Hague, C. E., Mahon, M. F. & Molloy, K. C. (2000). J. Chem. Soc. Dalton Trans. pp. 663–669.  Web of Science CSD CrossRef Google Scholar
First citationButler, R. N. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky, pp. 791–838. Amsterdam: Elsevier.  Google Scholar
First citationFu, D. W., Zhang, W. & Xiong, R. G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  CrossRef CAS Google Scholar
First citationYe, Q., Li, Y. H., Song, Y. M., Huang, X. F., Xiong, R. G. & Xue, Z. L. (2005). Inorg. Chem. 44, 3618–3625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chang, P. W. H., Zhu, J. S., Huang, S. P. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds