metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-bis­­(di­phenyl­phosphino)methane-κ2P:P′]bis­­[(2,2′-bi­pyridine-κ2N,N′)copper(I)] bis­­(tetra­fluoro­borate)

aFaculty of Science, Zhejiang Forestry University, Lin'An 311300, People's Republic of China, and bDepartment of Chemistry, Liaocheng University, Liaocheng 52059, People's Republic of China
*Correspondence e-mail: Jinsw@zjfc.edu.cn

(Received 7 September 2009; accepted 21 September 2009; online 26 September 2009)

The centrosymmetric title compound, [Cu2(C10H8N2)2(C25H22P2)2](BF4)2, consists of discrete dinuclear cations and tetra­fluoro­borate anions. The two CuI centers are bridged by the phosphine ligands to form an eight-membered ring. The CuI center exhibits a tetra­hedral coordination as it is chelated by the N-heterocycle.

Related literature

For general background to binuclear metal complexes containing bis(diphenylphosphino)methane, see: Stockland et al. (2001[Stockland, R. A., Janka, M., Hoel, G. R., Rath, N. P. & Anderson, G. K. (2001). Organometallics, 20, 5212-5219.]); Jin et al. (2008[Jin, S. W., Wang, D. Q., Wang, X. L., Guo, M. & Zhao, Q. J. (2008). J. Inorg. Organomet. Polym. 18, 300-303.]). For their photochemical and photophysical properties, see: Armaroli (2001[Armaroli, N. (2001). Chem. Soc. Rev. 30, 113-124.]); Yam et al. (1997[Yam, V. W. W., Fung, W. K. M. & Cheung, K. K. (1997). Chem. Commun. pp. 963-964.]). For related structures, see: Diez et al. (1987[Diez, J., Gamasa, M. P. & Gimeno, J. (1987). J. Chem. Soc. Dalton Trans. pp. 1275-1278.]); Ho & Bau (1983[Ho, D. M. & Bau, R. (1983). Inorg. Chem. 22, 4073-4079.]); Kuang et al. (2002[Kuang, S. M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313-3322.]). For the synthesis, see: Jia et al. (2005[Jia, W. L., McCormick, T., Tao, Y., Lu, J. P. & Wang, S. N. (2005). Inorg. Chem. 44, 5706-5712.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H8N2)2(C25H22P2)2](BF4)2

  • Mr = 1381.80

  • Triclinic, [P \overline 1]

  • a = 11.5601 (11) Å

  • b = 12.1936 (13) Å

  • c = 13.1022 (18) Å

  • α = 64.603 (1)°

  • β = 75.781 (2)°

  • γ = 75.120 (2)°

  • V = 1592.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 298 K

  • 0.35 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.871

  • 8214 measured reflections

  • 5497 independent reflections

  • 3264 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.216

  • S = 1.12

  • 5497 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bis(diphenylphosphino)methane (dppm) is an important bridging ligand. During the past decade transition metal chemistry of dppm have been widely studied. A large number of binuclear metal complexes containing dppm are known with a variety of photophysics and stereochemistry (Diez et al., 1987; Stockland et al., 2001; Yam et al., 1997).

Copper(I) complexes, which are inexpensive, abundant, and as strongly emissive as d10 Au(I) complexes, have received increased attention (Armaroli, 2001). As we are interested in research of CuI complexes containing N-heterocyclic compound and phosphine compounds (Jin et al., 2008). To obtain further insight into this very interesting field of research, we therefore decided to initiate an investigation on substituting the dppe(bis(diphenylphosphino)ethane) with dppm. In this work, we report on the reaction of [Cu2(dppm)2(CH3CN)2](BF4)2 with 2,2'-bipyridine, as well as the structure of [Cu2(dppm)2(L)2]2(BF4)2.

The complex was prepared by reacting equal mol of [Cu2(dppm)2(CH3CN)2](BF4)2, and 2,2'-bipyridine (L) in dry ethanol solution. This procedure, frequently used for the preparation of copper(I) complexes containing both N-heterocyclic compounds and triphenylphosphine ligands, gave dinuclear complex of the formula [Cu2(PPh3)4L](BF4)2 (Jia et al., 2005). The compound is an ionic compound which consists of dimeric [Cu2(µ-dppm)2(L)2]2+ cations, and of tetrafluoroborate anions. The asymmetric unit of dimeric [Cu2(µ-dppm)2(L)2]2+ cations contains a half of the cations including a CuI atom, one 2,2'-bipyridine, and one bis(diphenylphosphino)methane of which the phosphorus donor atoms are in cis-bound position. The structure of the cation is depicted in Fig. 1 together with the atomic numbering scheme. Two copper atoms are doubly bridged by two dppm ligands to form an eight-membered Cu2P4C2 ring, which displays chair conformation. The slightly distorted tetrahedral coordination around the copper atom is completed by two nitrogen atoms from chelate 2,2'-bipyridine ligands. Copper atoms doubly bridged by two dppm ligands have been found also in [Cu2(µ-dppm)2(MeCN)4][ClO4]2 (Diez et al., 1987), although the Cu—Cu separation of 4.599 Å in this investigation is longer than that found in complex [Cu2(µ-dppm)2(MeCN)4][ClO4]2 (3.757 (3) Å) (Diez et al., 1987), which may be due to the crowdiness of the coordinated 2,2'-bipyridine. The corresponding Cu—N bond lengths are 2.094 (6), and 2.106 (5) Å respectively being much similar to Cu—N (2.104 (3) Å) bond distance of [Cu(dmp)(DPEphos)]BF4 (Kuang et al., 2002). Also the two Cu—P bonds have a significant difference, one Cu—P bond (Cu(1)—P(2) 2.238 (2) Å) in the title compound is shorter than those in [Cu2(µ-dppm)2(MeCN)4][ClO4]2 (2.270 (3) and 2.283 (3) Å), another Cu—P (Cu(1)—P(1) 2.283 (2) Å) bond is almost the same with the value in [Cu2(µ-dppm)2(MeCN)4][ClO4]2 (Diez et al., 1987). The irregularities in the tetrahedral coordination geometry about the copper(I) center are best reflected in the values of the bond angles, since only three of them are close to the ideal tetrahedral value. For the dl0 complexes, the P—M—P units are distinctly nonlinear and M2P4 skeletal units are not coplanar (Ho & Bau, 1983), our compound conforms with this case also. As expected, the largest angle P(2)—Cu(1)—P(1) (136.81 (6) °) which is larger than the corresponding value in [Cu2(µ-dppm)2(MeCN)4][ClO4]2 (Diez et al., 1987)arises between the two most bulky ligands.

Related literature top

For related literature, see: Armaroli (2001); Diez et al. (1987); Ho & Bau (1983); Jia et al. (2005); Jin et al. (2008); Kuang et al. (2002), Stockland et al. (2001); Yam et al. (1997). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see⋯" it said, for example, "For general background, see⋯. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

The CHN elemental analyses were performed on a Perkin-Elmer elemental analyzer.

To a solution of 2,2'-bipyridine (0.032 g, 0.2 mmol) in 10 ml of ethanol was added [Cu2(dppm)2(CH3CN)2](BF4)2 (0.180 g, 0.2 mmol). The mixture was stirred at room temperature overnight to afford a yellow solid, which was collected by filtration, washed with ethanol and ether, Yield: 0.148 g, 53.5%. Anal. Calcd. for C70H60B2Cu2F8N4P4: C, 60.83%, H, 4.34%, N, 4.06%. Found: C, 60.81%, H, 4.28%, N, 4.13%. Suitable crystals were grown by slow diffusion of diethyl ether to its DMF solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C).

The largest peak/hole in the difference Fourier map are 1.435 and -0.802 respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the dimeric cation, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis[µ-bis(diphenylphosphino)methane-κ2P:P']bis[(2,2'- bipyridine-κ2N,N')copper(I)] bis(tetrafluoroborate) top
Crystal data top
[Cu2(C10H8N2)2(C25H22P2)2](BF4)2Z = 1
Mr = 1381.80F(000) = 708
Triclinic, P1Dx = 1.440 Mg m3
a = 11.5601 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1936 (13) ÅCell parameters from 1867 reflections
c = 13.1022 (18) Åθ = 2.3–22.2°
α = 64.603 (1)°µ = 0.84 mm1
β = 75.781 (2)°T = 298 K
γ = 75.120 (2)°Prism, yellow
V = 1592.9 (3) Å30.35 × 0.29 × 0.17 mm
Data collection top
Bruker SMART
diffractometer
5497 independent reflections
Radiation source: fine-focus sealed tube3264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.758, Tmax = 0.871k = 1414
8214 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0959P)2]
where P = (Fo2 + 2Fc2)/3
5497 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Cu2(C10H8N2)2(C25H22P2)2](BF4)2γ = 75.120 (2)°
Mr = 1381.80V = 1592.9 (3) Å3
Triclinic, P1Z = 1
a = 11.5601 (11) ÅMo Kα radiation
b = 12.1936 (13) ŵ = 0.84 mm1
c = 13.1022 (18) ÅT = 298 K
α = 64.603 (1)°0.35 × 0.29 × 0.17 mm
β = 75.781 (2)°
Data collection top
Bruker SMART
diffractometer
5497 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3264 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.871Rint = 0.052
8214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.12Δρmax = 1.44 e Å3
5497 reflectionsΔρmin = 0.80 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50912 (7)0.43927 (7)0.35411 (6)0.0397 (3)
B10.7558 (10)0.8853 (10)0.1027 (8)0.067 (3)
F10.7993 (5)0.9609 (5)0.1329 (4)0.0951 (16)
F20.645 (5)0.941 (8)0.066 (9)0.079 (10)0.6 (3)
F30.839 (5)0.868 (9)0.011 (6)0.087 (8)0.6 (3)
F40.749 (11)0.773 (6)0.193 (5)0.087 (14)0.6 (3)
F2'0.666 (12)0.955 (10)0.035 (9)0.078 (12)0.4 (3)
F3'0.701 (16)0.801 (12)0.203 (4)0.090 (16)0.4 (3)
F4'0.845 (5)0.822 (19)0.047 (16)0.09 (2)0.4 (3)
N10.5285 (5)0.2987 (5)0.2966 (5)0.0493 (14)
N20.5743 (5)0.5269 (5)0.1790 (4)0.0447 (13)
P10.68607 (14)0.38802 (15)0.42487 (13)0.0363 (4)
P20.31095 (14)0.47660 (14)0.41841 (13)0.0347 (4)
C10.5006 (7)0.1871 (7)0.3560 (7)0.060 (2)
H10.47100.16530.43360.072*
C20.5126 (8)0.1007 (8)0.3098 (9)0.079 (3)
H20.49180.02340.35490.094*
C30.5562 (9)0.1334 (9)0.1957 (10)0.093 (3)
H30.56480.07850.16120.111*
C40.5874 (8)0.2486 (9)0.1322 (8)0.084 (3)
H40.61730.27190.05450.101*
C50.5737 (6)0.3292 (7)0.1850 (6)0.0530 (18)
C60.6058 (6)0.4537 (7)0.1216 (6)0.0478 (17)
C70.6681 (8)0.4930 (9)0.0094 (6)0.072 (2)
H70.69000.44110.03000.086*
C80.6957 (8)0.6078 (9)0.0406 (7)0.083 (3)
H80.73710.63510.11510.100*
C90.6636 (8)0.6832 (9)0.0169 (7)0.079 (3)
H90.68210.76230.01700.095*
C100.6031 (6)0.6396 (7)0.1266 (6)0.0568 (19)
H100.58110.69100.16650.068*
C110.7495 (6)0.4990 (5)0.4462 (5)0.0388 (15)
H11A0.73600.57790.38280.047*
H11B0.83650.47190.44260.047*
C120.8068 (6)0.3515 (6)0.3173 (5)0.0410 (15)
C130.8772 (6)0.4376 (7)0.2381 (5)0.0519 (18)
H130.86890.51320.24300.062*
C140.9579 (7)0.4115 (9)0.1541 (6)0.073 (2)
H141.00530.46950.10240.087*
C150.9717 (7)0.3019 (9)0.1431 (6)0.070 (2)
H151.02890.28530.08550.084*
C160.8997 (7)0.2156 (8)0.2183 (7)0.068 (2)
H160.90490.14270.20940.081*
C170.8198 (6)0.2406 (7)0.3070 (6)0.0503 (17)
H170.77430.18170.36040.060*
C180.7024 (6)0.2477 (6)0.5546 (5)0.0434 (16)
C190.6008 (7)0.2131 (7)0.6317 (6)0.0568 (19)
H190.52470.25690.61440.068*
C200.6108 (11)0.1126 (9)0.7358 (7)0.084 (3)
H200.54190.09160.78890.101*
C210.7213 (12)0.0459 (8)0.7592 (8)0.086 (3)
H210.72790.02250.82760.103*
C220.8256 (9)0.0790 (7)0.6813 (7)0.074 (2)
H220.90150.03290.69720.088*
C230.8146 (7)0.1794 (6)0.5820 (6)0.0549 (18)
H230.88420.20300.53100.066*
C240.2196 (5)0.6013 (6)0.3136 (5)0.0378 (14)
C250.2751 (6)0.6778 (6)0.2144 (5)0.0461 (16)
H250.35930.66710.20010.055*
C260.2088 (7)0.7724 (7)0.1330 (6)0.059 (2)
H260.24830.82560.06610.071*
C270.0844 (7)0.7861 (7)0.1526 (7)0.066 (2)
H270.03900.84740.09840.079*
C280.0279 (7)0.7079 (7)0.2535 (7)0.066 (2)
H280.05620.71670.26670.080*
C290.0928 (6)0.6180 (7)0.3343 (6)0.0580 (19)
H290.05300.56780.40300.070*
C300.2459 (5)0.3410 (6)0.4496 (5)0.0387 (15)
C310.2526 (6)0.2395 (6)0.5525 (5)0.0486 (17)
H310.28420.24280.60970.058*
C320.2132 (7)0.1342 (7)0.5712 (6)0.060 (2)
H320.21820.06750.64100.072*
C330.1666 (7)0.1261 (7)0.4878 (7)0.066 (2)
H330.13940.05520.50060.079*
C340.1615 (7)0.2254 (7)0.3860 (7)0.066 (2)
H340.13170.22080.32840.079*
C350.1991 (7)0.3318 (7)0.3662 (6)0.0581 (19)
H350.19320.39830.29640.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0353 (5)0.0503 (5)0.0409 (5)0.0031 (4)0.0079 (3)0.0260 (4)
B10.068 (7)0.088 (8)0.054 (6)0.001 (6)0.027 (5)0.035 (6)
F10.088 (4)0.112 (4)0.103 (4)0.009 (3)0.028 (3)0.056 (3)
F20.055 (13)0.12 (2)0.06 (2)0.003 (10)0.013 (14)0.04 (2)
F30.065 (11)0.12 (2)0.068 (16)0.019 (12)0.018 (9)0.044 (19)
F40.09 (3)0.093 (17)0.078 (11)0.021 (16)0.044 (16)0.014 (9)
F2'0.06 (3)0.12 (2)0.04 (2)0.000 (19)0.017 (18)0.03 (2)
F3'0.09 (4)0.12 (2)0.062 (12)0.01 (3)0.031 (17)0.027 (14)
F4'0.067 (11)0.13 (5)0.09 (4)0.03 (2)0.038 (18)0.07 (4)
N10.039 (3)0.057 (4)0.058 (4)0.006 (3)0.004 (3)0.031 (3)
N20.034 (3)0.060 (4)0.045 (3)0.007 (3)0.004 (2)0.027 (3)
P10.0317 (9)0.0466 (10)0.0361 (9)0.0026 (7)0.0063 (6)0.0230 (8)
P20.0334 (9)0.0424 (9)0.0345 (8)0.0041 (7)0.0087 (6)0.0201 (8)
C10.055 (5)0.054 (5)0.074 (5)0.005 (4)0.004 (4)0.033 (4)
C20.076 (6)0.058 (5)0.120 (8)0.001 (4)0.015 (5)0.059 (6)
C30.100 (8)0.087 (7)0.121 (9)0.003 (6)0.010 (6)0.080 (7)
C40.083 (7)0.115 (8)0.091 (7)0.018 (6)0.001 (5)0.081 (7)
C50.041 (4)0.080 (5)0.063 (5)0.002 (4)0.012 (3)0.054 (4)
C60.035 (4)0.073 (5)0.049 (4)0.005 (3)0.008 (3)0.038 (4)
C70.076 (6)0.110 (7)0.050 (5)0.026 (5)0.001 (4)0.048 (5)
C80.099 (7)0.115 (8)0.042 (5)0.046 (6)0.010 (4)0.032 (5)
C90.090 (7)0.091 (6)0.051 (5)0.043 (5)0.011 (4)0.008 (5)
C100.053 (5)0.063 (5)0.056 (5)0.010 (4)0.002 (3)0.027 (4)
C110.040 (4)0.045 (4)0.037 (3)0.009 (3)0.005 (3)0.021 (3)
C120.038 (4)0.050 (4)0.037 (3)0.011 (3)0.015 (3)0.025 (3)
C130.051 (4)0.070 (5)0.040 (4)0.007 (4)0.005 (3)0.029 (4)
C140.065 (6)0.102 (7)0.051 (5)0.015 (5)0.001 (4)0.034 (5)
C150.061 (5)0.101 (7)0.047 (5)0.009 (5)0.003 (4)0.044 (5)
C160.068 (5)0.086 (6)0.065 (5)0.027 (5)0.022 (4)0.060 (5)
C170.043 (4)0.064 (5)0.050 (4)0.000 (3)0.011 (3)0.032 (4)
C180.053 (4)0.046 (4)0.041 (4)0.010 (3)0.008 (3)0.025 (3)
C190.066 (5)0.066 (5)0.047 (4)0.023 (4)0.006 (4)0.025 (4)
C200.132 (9)0.085 (7)0.050 (5)0.069 (7)0.001 (5)0.021 (5)
C210.146 (10)0.053 (5)0.060 (6)0.025 (6)0.042 (7)0.005 (5)
C220.101 (7)0.057 (5)0.066 (5)0.013 (5)0.036 (5)0.030 (5)
C230.067 (5)0.052 (4)0.049 (4)0.000 (4)0.019 (4)0.022 (4)
C240.036 (4)0.045 (4)0.042 (4)0.004 (3)0.012 (3)0.023 (3)
C250.041 (4)0.049 (4)0.045 (4)0.004 (3)0.011 (3)0.020 (3)
C260.076 (6)0.053 (4)0.037 (4)0.003 (4)0.002 (4)0.015 (4)
C270.059 (5)0.065 (5)0.073 (5)0.011 (4)0.034 (4)0.024 (5)
C280.046 (5)0.073 (5)0.069 (5)0.002 (4)0.027 (4)0.011 (5)
C290.045 (4)0.070 (5)0.052 (4)0.008 (4)0.009 (3)0.017 (4)
C300.031 (3)0.045 (4)0.043 (4)0.005 (3)0.009 (3)0.019 (3)
C310.056 (4)0.054 (4)0.042 (4)0.011 (3)0.012 (3)0.022 (4)
C320.070 (5)0.053 (5)0.055 (5)0.018 (4)0.009 (4)0.015 (4)
C330.070 (6)0.049 (5)0.088 (6)0.024 (4)0.012 (5)0.029 (5)
C340.077 (6)0.066 (5)0.081 (6)0.017 (4)0.033 (4)0.038 (5)
C350.072 (5)0.063 (5)0.049 (4)0.010 (4)0.022 (4)0.026 (4)
Geometric parameters (Å, º) top
Cu1—N12.094 (5)C13—C141.351 (9)
Cu1—N22.106 (5)C13—H130.9300
Cu1—P22.2384 (17)C14—C151.371 (11)
Cu1—P12.2830 (18)C14—H140.9300
B1—F4'1.38 (5)C15—C161.388 (11)
B1—F41.38 (3)C15—H150.9300
B1—F21.38 (6)C16—C171.389 (9)
B1—F11.381 (11)C16—H160.9300
B1—F2'1.39 (10)C17—H170.9300
B1—F3'1.40 (6)C18—C191.373 (9)
B1—F31.40 (3)C18—C231.386 (9)
N1—C11.325 (8)C19—C201.395 (11)
N1—C51.344 (8)C19—H190.9300
N2—C61.329 (8)C20—C211.354 (13)
N2—C101.336 (8)C20—H200.9300
P1—C181.830 (7)C21—C221.396 (13)
P1—C111.840 (6)C21—H210.9300
P1—C121.840 (6)C22—C231.358 (10)
P2—C301.837 (6)C22—H220.9300
P2—C241.847 (6)C23—H230.9300
P2—C11i1.860 (6)C24—C251.352 (8)
C1—C21.387 (10)C24—C291.402 (9)
C1—H10.9300C25—C261.396 (9)
C2—C31.368 (13)C25—H250.9300
C2—H20.9300C26—C271.377 (10)
C3—C41.380 (12)C26—H260.9300
C3—H30.9300C27—C281.377 (10)
C4—C51.385 (10)C27—H270.9300
C4—H40.9300C28—C291.364 (10)
C5—C61.479 (9)C28—H280.9300
C6—C71.401 (10)C29—H290.9300
C7—C81.353 (11)C30—C351.387 (9)
C7—H70.9300C30—C311.388 (8)
C8—C91.354 (11)C31—C321.375 (9)
C8—H80.9300C31—H310.9300
C9—C101.370 (10)C32—C331.379 (10)
C9—H90.9300C32—H320.9300
C10—H100.9300C33—C341.366 (10)
C11—P2i1.860 (6)C33—H330.9300
C11—H11A0.9700C34—C351.374 (9)
C11—H11B0.9700C34—H340.9300
C12—C171.382 (9)C35—H350.9300
C12—C131.390 (9)
N1—Cu1—N278.6 (2)P2i—C11—H11A108.1
N1—Cu1—P2104.72 (15)P1—C11—H11B108.1
N2—Cu1—P2119.60 (15)P2i—C11—H11B108.1
N1—Cu1—P1101.00 (16)H11A—C11—H11B107.3
N2—Cu1—P199.03 (15)C17—C12—C13118.7 (6)
P2—Cu1—P1136.81 (6)C17—C12—P1119.3 (5)
F4'—B1—F486 (5)C13—C12—P1121.6 (5)
F4'—B1—F2122 (3)C14—C13—C12120.0 (7)
F4—B1—F2112 (2)C14—C13—H13120.0
F4'—B1—F1113 (4)C12—C13—H13120.0
F4—B1—F1109.9 (18)C13—C14—C15121.7 (8)
F2—B1—F1111 (3)C13—C14—H14119.1
F4'—B1—F2'111 (4)C15—C14—H14119.1
F4—B1—F2'126 (4)C14—C15—C16119.7 (7)
F2—B1—F2'17 (3)C14—C15—H15120.2
F1—B1—F2'109 (5)C16—C15—H15120.2
F4'—B1—F3'109 (4)C15—C16—C17118.6 (7)
F4—B1—F3'24 (3)C15—C16—H16120.7
F2—B1—F3'91 (4)C17—C16—H16120.7
F1—B1—F3'107 (2)C12—C17—C16121.2 (7)
F2'—B1—F3'107 (4)C12—C17—H17119.4
F4'—B1—F323 (6)C16—C17—H17119.4
F4—B1—F3110 (2)C19—C18—C23118.4 (7)
F2—B1—F3108.1 (18)C19—C18—P1119.1 (6)
F1—B1—F3106.7 (18)C23—C18—P1122.4 (5)
F2'—B1—F393 (3)C18—C19—C20120.6 (8)
F3'—B1—F3131 (3)C18—C19—H19119.7
C1—N1—C5117.9 (6)C20—C19—H19119.7
C1—N1—Cu1128.0 (5)C21—C20—C19119.7 (8)
C5—N1—Cu1114.1 (5)C21—C20—H20120.1
C6—N2—C10118.2 (6)C19—C20—H20120.1
C6—N2—Cu1114.5 (4)C20—C21—C22120.5 (8)
C10—N2—Cu1126.4 (5)C20—C21—H21119.8
C18—P1—C11104.8 (3)C22—C21—H21119.8
C18—P1—C12103.4 (3)C23—C22—C21119.1 (8)
C11—P1—C12100.2 (3)C23—C22—H22120.5
C18—P1—Cu1116.5 (2)C21—C22—H22120.5
C11—P1—Cu1122.8 (2)C22—C23—C18121.7 (7)
C12—P1—Cu1106.3 (2)C22—C23—H23119.2
C30—P2—C24102.6 (3)C18—C23—H23119.2
C30—P2—C11i100.2 (3)C25—C24—C29118.9 (6)
C24—P2—C11i104.2 (3)C25—C24—P2120.0 (5)
C30—P2—Cu1108.4 (2)C29—C24—P2121.1 (5)
C24—P2—Cu1115.4 (2)C24—C25—C26121.4 (7)
C11i—P2—Cu1123.3 (2)C24—C25—H25119.3
N1—C1—C2124.1 (8)C26—C25—H25119.3
N1—C1—H1117.9C27—C26—C25119.3 (7)
C2—C1—H1117.9C27—C26—H26120.3
C3—C2—C1117.6 (8)C25—C26—H26120.3
C3—C2—H2121.2C26—C27—C28119.3 (7)
C1—C2—H2121.2C26—C27—H27120.4
C2—C3—C4119.3 (8)C28—C27—H27120.4
C2—C3—H3120.3C29—C28—C27121.2 (8)
C4—C3—H3120.3C29—C28—H28119.4
C3—C4—C5119.5 (8)C27—C28—H28119.4
C3—C4—H4120.2C28—C29—C24119.8 (7)
C5—C4—H4120.2C28—C29—H29120.1
N1—C5—C4121.4 (7)C24—C29—H29120.1
N1—C5—C6116.5 (6)C35—C30—C31117.6 (6)
C4—C5—C6122.1 (7)C35—C30—P2120.7 (5)
N2—C6—C7121.2 (7)C31—C30—P2121.5 (5)
N2—C6—C5115.7 (5)C32—C31—C30121.1 (6)
C7—C6—C5123.1 (7)C32—C31—H31119.5
C8—C7—C6118.8 (8)C30—C31—H31119.5
C8—C7—H7120.6C31—C32—C33120.9 (7)
C6—C7—H7120.6C31—C32—H32119.6
C7—C8—C9120.5 (7)C33—C32—H32119.6
C7—C8—H8119.8C34—C33—C32118.1 (7)
C9—C8—H8119.8C34—C33—H33121.0
C8—C9—C10118.1 (8)C32—C33—H33121.0
C8—C9—H9121.0C33—C34—C35121.8 (7)
C10—C9—H9121.0C33—C34—H34119.1
N2—C10—C9123.2 (7)C35—C34—H34119.1
N2—C10—H10118.4C34—C35—C30120.6 (7)
C9—C10—H10118.4C34—C35—H35119.7
P1—C11—P2i116.7 (3)C30—C35—H35119.7
P1—C11—H11A108.1
N2—Cu1—N1—C1177.1 (6)Cu1—P1—C11—P2i83.5 (4)
P2—Cu1—N1—C159.2 (6)C18—P1—C12—C1748.0 (6)
P1—Cu1—N1—C185.8 (6)C11—P1—C12—C17156.0 (5)
N2—Cu1—N1—C52.0 (5)Cu1—P1—C12—C1775.2 (5)
P2—Cu1—N1—C5119.9 (4)C18—P1—C12—C13138.8 (5)
P1—Cu1—N1—C595.1 (5)C11—P1—C12—C1330.8 (6)
N1—Cu1—N2—C65.9 (4)Cu1—P1—C12—C1398.0 (5)
P2—Cu1—N2—C6106.4 (4)C17—C12—C13—C140.9 (10)
P1—Cu1—N2—C693.6 (4)P1—C12—C13—C14174.2 (6)
N1—Cu1—N2—C10175.2 (6)C12—C13—C14—C150.9 (12)
P2—Cu1—N2—C1084.3 (6)C13—C14—C15—C161.3 (13)
P1—Cu1—N2—C1075.7 (6)C14—C15—C16—C173.5 (12)
N1—Cu1—P1—C1869.1 (3)C13—C12—C17—C161.3 (10)
N2—Cu1—P1—C18149.1 (3)P1—C12—C17—C16172.1 (5)
P2—Cu1—P1—C1856.7 (2)C15—C16—C17—C123.5 (11)
N1—Cu1—P1—C11159.5 (3)C11—P1—C18—C19108.9 (5)
N2—Cu1—P1—C1179.5 (3)C12—P1—C18—C19146.6 (5)
P2—Cu1—P1—C1174.6 (2)Cu1—P1—C18—C1930.4 (6)
N1—Cu1—P1—C1245.4 (3)C11—P1—C18—C2366.6 (6)
N2—Cu1—P1—C1234.6 (3)C12—P1—C18—C2338.0 (6)
P2—Cu1—P1—C12171.2 (2)Cu1—P1—C18—C23154.1 (5)
N1—Cu1—P2—C3021.0 (3)C23—C18—C19—C201.0 (10)
N2—Cu1—P2—C30106.0 (3)P1—C18—C19—C20174.6 (5)
P1—Cu1—P2—C30103.7 (2)C18—C19—C20—C212.5 (11)
N1—Cu1—P2—C2493.3 (3)C19—C20—C21—C221.9 (13)
N2—Cu1—P2—C248.3 (3)C20—C21—C22—C230.3 (13)
P1—Cu1—P2—C24142.1 (2)C21—C22—C23—C181.9 (11)
N1—Cu1—P2—C11i137.2 (3)C19—C18—C23—C221.2 (10)
N2—Cu1—P2—C11i137.8 (3)P1—C18—C23—C22176.7 (5)
P1—Cu1—P2—C11i12.5 (3)C30—P2—C24—C25129.9 (5)
C5—N1—C1—C21.4 (11)C11i—P2—C24—C25126.0 (5)
Cu1—N1—C1—C2177.7 (6)Cu1—P2—C24—C2512.4 (6)
N1—C1—C2—C30.0 (13)C30—P2—C24—C2949.5 (6)
C1—C2—C3—C40.8 (14)C11i—P2—C24—C2954.6 (6)
C2—C3—C4—C50.1 (15)Cu1—P2—C24—C29167.1 (5)
C1—N1—C5—C42.0 (10)C29—C24—C25—C260.1 (10)
Cu1—N1—C5—C4177.2 (6)P2—C24—C25—C26179.5 (5)
C1—N1—C5—C6179.1 (6)C24—C25—C26—C271.8 (10)
Cu1—N1—C5—C61.7 (8)C25—C26—C27—C281.5 (11)
C3—C4—C5—N11.3 (13)C26—C27—C28—C290.5 (12)
C3—C4—C5—C6179.9 (8)C27—C28—C29—C242.2 (12)
C10—N2—C6—C70.3 (10)C25—C24—C29—C281.9 (10)
Cu1—N2—C6—C7169.9 (6)P2—C24—C29—C28177.6 (6)
C10—N2—C6—C5178.7 (6)C24—P2—C30—C3532.0 (6)
Cu1—N2—C6—C58.5 (7)C11i—P2—C30—C35139.2 (6)
N1—C5—C6—N26.9 (9)Cu1—P2—C30—C3590.5 (6)
C4—C5—C6—N2172.0 (7)C24—P2—C30—C31154.5 (5)
N1—C5—C6—C7171.4 (7)C11i—P2—C30—C3147.3 (6)
C4—C5—C6—C79.7 (11)Cu1—P2—C30—C3183.1 (5)
N2—C6—C7—C80.2 (12)C35—C30—C31—C320.5 (9)
C5—C6—C7—C8178.5 (8)P2—C30—C31—C32174.2 (5)
C6—C7—C8—C90.0 (14)C30—C31—C32—C330.4 (11)
C7—C8—C9—C100.2 (14)C31—C32—C33—C340.5 (12)
C6—N2—C10—C90.1 (11)C32—C33—C34—C351.2 (12)
Cu1—N2—C10—C9168.8 (6)C33—C34—C35—C301.1 (12)
C8—C9—C10—N20.1 (13)C31—C30—C35—C340.2 (10)
C18—P1—C11—P2i52.5 (4)P2—C30—C35—C34173.6 (6)
C12—P1—C11—P2i159.4 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C10H8N2)2(C25H22P2)2](BF4)2
Mr1381.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.5601 (11), 12.1936 (13), 13.1022 (18)
α, β, γ (°)64.603 (1), 75.781 (2), 75.120 (2)
V3)1592.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.35 × 0.29 × 0.17
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
8214, 5497, 3264
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.216, 1.12
No. of reflections5497
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 0.80

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

References

First citationArmaroli, N. (2001). Chem. Soc. Rev. 30, 113–124.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiez, J., Gamasa, M. P. & Gimeno, J. (1987). J. Chem. Soc. Dalton Trans. pp. 1275–1278.  CSD CrossRef Web of Science Google Scholar
First citationHo, D. M. & Bau, R. (1983). Inorg. Chem. 22, 4073–4079.  CSD CrossRef CAS Web of Science Google Scholar
First citationJia, W. L., McCormick, T., Tao, Y., Lu, J. P. & Wang, S. N. (2005). Inorg. Chem. 44, 5706–5712.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, S. W., Wang, D. Q., Wang, X. L., Guo, M. & Zhao, Q. J. (2008). J. Inorg. Organomet. Polym. 18, 300–303.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, S. M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313–3322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStockland, R. A., Janka, M., Hoel, G. R., Rath, N. P. & Anderson, G. K. (2001). Organometallics, 20, 5212–5219.  Web of Science CSD CrossRef CAS Google Scholar
First citationYam, V. W. W., Fung, W. K. M. & Cheung, K. K. (1997). Chem. Commun. pp. 963–964.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds