metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ2-5-methyl­pyrazine-2-carboxyl­ato)-1:2κ3N1,O:O;2:3κ3O:N1,O;1:2κ2O:O′;3:4κ2O:O′-octa­octyl-1κ2C,2κ2C,3κ2C,4κ2C-di-μ3-oxido-1:2:3κ3O;1:3:4κ3O-tetra­tin(IV)

aDepartment of Chemistry, Jining University, Shandong 273155, People's Republic of China, and bMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 3 November 2009; accepted 9 November 2009; online 14 November 2009)

The title compound, [Sn4(C8H17)8O2(C6H5N2O2)4], is a tetra­nuclear SnIV complex, built up by inversion symmetry around the central Sn2O2 ring. The SnIV coordination geometries are distorted SnO3C2 trigonal-bipyramidal and distorted SnO4C2 octa­hedral. The three-coordinate μ3-oxido bridging O atom in the Sn2O2 ring is attached to three Sn atoms. All non-H atoms, with the exception of the Sn-bonded octyl groups, lie approximately on a non-crystallographic mirror plane.

Related literature

For biological activity of organotin derivatives of carboxylic acid ligands, see: Gielen et al. (1988[Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873-876.]). For related μ3-oxo bridged SnIV structures, see: Vollano et al. (1984[Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.]); Yin et al. (2003[Yin, H. D., Wang, C. H. & Ma, C. L. (2003). Chin. J. Org. Chem. 23, 475-478.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C8H17)8O2(C6H5N2O2)4]

  • Mr = 1960.97

  • Triclinic, [P \overline 1]

  • a = 12.406 (4) Å

  • b = 13.282 (4) Å

  • c = 16.223 (5) Å

  • α = 76.623 (4)°

  • β = 73.361 (4)°

  • γ = 86.522 (3)°

  • V = 2491.7 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 295 K

  • 0.63 × 0.54 × 0.49 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.602, Tmax = 0.623

  • 12764 measured reflections

  • 8613 independent reflections

  • 4935 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.223

  • S = 1.11

  • 8613 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 3.10 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O5 1.993 (6)
Sn1—C21 2.133 (16)
Sn1—C13 2.135 (13)
Sn1—O4i 2.158 (7)
Sn1—O1 2.202 (6)
Sn2—C37 2.090 (12)
Sn2—C29 2.093 (13)
Sn2—O5i 2.111 (6)
Sn2—O5 2.151 (6)
Sn2—O1 2.455 (7)
Sn2—O3 2.472 (7)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen, et al., 1988). 2-Methylpyrazine-5-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures.

The title compound, (Fig. 1), is a tetranuclear tin(IV) complex containing a total of 110 non-H atoms. The molecule is centrosymmetric with a central core Sn2O2; the structure is similar to those seen previously in resemble compounds (Yin et al., 2003). The µ3-bridging O5 atom in the Sn2O2 ring is also attached to a capryl2SnO2 unit (capryl is the trivial name of the octyl group). In addition, the carboxylate group coordinates to two Sn atoms in a bridging mode. Sn—O and Sn—C bond lenghts are shown in Table 1.

The geometries of both the exocyclic Sn atoms are distorted trigonal- bipyramidal. For the Sn1, atoms O1 and O7 are in axial positions [O1—Sn1—O4 = 168.0 (3)°] and the C atoms of the two capryl groups and O5 are in equatorial positions. The sum of the equatorial C—Sn—C and O—Sn—C angles is 339°, indicating a significant distortion from coplanarity for these atoms.

The geometry around the endocyclic atom Sn2 is different from that of Sn1 and is a distorted octahedron. Here, O3 and O5 are in axial positions [O3—Sn2—O5 =158.9 (3)°] and the C atoms of the two capryl groups, O5i [symmetry code: -x + 1, -y + 2, -z + 2] and O1 are in equatorial positions. The sum of the equatorial C—Sn—C and O—Sn—C angles is 353.7°, indicating a significant distortion from coplanarity for these atoms. This distortion may arise because of a short Sn2···N1 contact of 2.829 (6)Å (sum of the van der Waals radii = 3.81 Å). Related µ3 oxo-bridhed tin(IV) ladder structures were reported by Vollano et al., 1984) (Fig. 2).

Related literature top

For biological activity of organotin derivatives of carboxylic acid ligands, see: Gielen et al. (1988). For related µ3-oxo bridged SnIV structures, see: Vollano et al. (1984); Yin et al. (2003).

Experimental top

A mixture of dicapryltin oxide (2.0 mmol,0.722 g) and 2-methylpyrazine-5-carboxylic acid (2.0 mmol, 0.276 g) in methanol (80 ml) was heated under reflux for 8 h. The obtained clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield blocks of (I). Yield 0.804 g, 82%, m.p. 368 K, analysis, calculated for C88H156N8O10Sn4: C 53.90, H, 8.02; N 5.71%; found: C 53.92, H 8.09, N, 5.76%.

Refinement top

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å] and constrained to ride on their parent atoms with Uiso(H) = 1.2(1.5 for methyl)Ueq(C/N).

Computing details top

Data collection: SMART (Bruker 1998); cell refinement: SAINT (Bruker 1998); data reduction: SAINT (Bruker 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% displacement ellipsoids (H atoms omitted for clarity) and the short Sn···N contacts indicated by dashed lines. Symmetry codes as in Table 1.
[Figure 2] Fig. 2. The same view as in Figure 1, but the n-capryl groups have been omitted for clarity.
Tetrakis(µ2-5-methylpyrazine-2-carboxylato)- 1:4κ3N1,O:O;2:3κ3O:N1,O; 1:2κ2O:O';3:4κ2O:4κO'-octaoctyl- 1κ2C,2κ2C,3κ2C,4κ2C-di-µ3-oxido- 1:2:3κ3O;1:3:4κ3O-tetratin(IV) top
Crystal data top
[Sn4(C8H17)8O2(C6H5N2O2)4]Z = 1
Mr = 1960.97F(000) = 1020
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.406 (4) ÅCell parameters from 3961 reflections
b = 13.282 (4) Åθ = 2.2–26.6°
c = 16.223 (5) ŵ = 1.05 mm1
α = 76.623 (4)°T = 295 K
β = 73.361 (4)°Block, colourless
γ = 86.522 (3)°0.63 × 0.54 × 0.49 mm
V = 2491.7 (13) Å3
Data collection top
Bruker SMART CCD
diffractometer
8613 independent reflections
Radiation source: fine-focus sealed tube4935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1114
Tmin = 0.602, Tmax = 0.623k = 1515
12764 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0784P)2 + 14.9991P]
where P = (Fo2 + 2Fc2)/3
8613 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 3.10 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Sn4(C8H17)8O2(C6H5N2O2)4]γ = 86.522 (3)°
Mr = 1960.97V = 2491.7 (13) Å3
Triclinic, P1Z = 1
a = 12.406 (4) ÅMo Kα radiation
b = 13.282 (4) ŵ = 1.05 mm1
c = 16.223 (5) ÅT = 295 K
α = 76.623 (4)°0.63 × 0.54 × 0.49 mm
β = 73.361 (4)°
Data collection top
Bruker SMART CCD
diffractometer
8613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4935 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.623Rint = 0.041
12764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0784P)2 + 14.9991P]
where P = (Fo2 + 2Fc2)/3
8613 reflectionsΔρmax = 3.10 e Å3
496 parametersΔρmin = 1.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75921 (6)1.02020 (5)1.00407 (5)0.0425 (3)
Sn20.54331 (5)0.88620 (5)0.97148 (5)0.0352 (2)
N10.6754 (7)0.7190 (6)0.9181 (6)0.048 (2)
N20.8219 (9)0.5630 (7)0.8661 (7)0.064 (3)
N30.3417 (7)0.5913 (7)0.9200 (7)0.053 (3)
N40.1270 (10)0.5904 (8)0.9034 (9)0.082 (4)
O10.7472 (6)0.8839 (5)0.9515 (5)0.0458 (18)
O20.9195 (7)0.8183 (6)0.9440 (6)0.065 (2)
O30.4103 (6)0.7570 (5)0.9680 (5)0.051 (2)
O40.2668 (6)0.8471 (5)0.9371 (5)0.052 (2)
O50.6013 (5)1.0223 (5)0.9969 (5)0.0377 (16)
C10.8261 (10)0.8085 (8)0.9410 (8)0.050 (3)
C20.7819 (10)0.7240 (9)0.9119 (8)0.055 (3)
C30.8574 (11)0.6445 (9)0.8875 (9)0.060 (3)
H30.93240.64880.88630.072*
C40.7144 (10)0.5611 (9)0.8713 (8)0.056 (3)
C50.6447 (10)0.6354 (9)0.8977 (8)0.057 (3)
H50.56900.62840.90210.068*
C60.6730 (12)0.4696 (10)0.8488 (10)0.073 (4)
H6A0.73510.42530.83080.109*
H6B0.63890.49330.80170.109*
H6C0.61850.43180.89980.109*
C70.3250 (9)0.7600 (8)0.9431 (8)0.051 (3)
C80.2775 (9)0.6749 (8)0.9274 (8)0.051 (3)
C90.1718 (11)0.6705 (9)0.9178 (9)0.066 (4)
H90.12740.72910.92180.079*
C100.1861 (11)0.5135 (9)0.8960 (9)0.059 (3)
C110.2959 (10)0.5123 (9)0.9025 (9)0.061 (3)
H110.33960.45400.89430.073*
C120.1371 (12)0.4235 (10)0.8802 (10)0.075 (4)
H12A0.10700.37540.93540.112*
H12B0.19440.39020.84200.112*
H12C0.07800.44640.85300.112*
C130.7885 (12)0.9313 (11)1.1232 (9)0.073 (4)
H13A0.79540.85911.12000.087*
H13B0.85960.95291.12750.087*
C140.6980 (13)0.9405 (12)1.2060 (10)0.081 (4)
H14A0.62570.92581.19930.097*
H14B0.69651.01141.21260.097*
C150.7133 (13)0.8685 (12)1.2899 (10)0.086 (5)
H15A0.71680.79761.28310.104*
H15B0.78430.88461.29810.104*
C160.6188 (15)0.8776 (13)1.3717 (11)0.096 (5)
H16A0.61630.94831.37900.116*
H16B0.54770.86291.36300.116*
C170.6319 (16)0.8052 (14)1.4551 (12)0.103 (5)
H17A0.70180.82131.46500.124*
H17B0.63660.73471.44740.124*
C180.5347 (16)0.8129 (14)1.5359 (12)0.110 (6)
H18A0.46460.79741.52620.132*
H18B0.53050.88301.54460.132*
C190.5503 (17)0.7374 (16)1.6189 (13)0.121 (7)
H19A0.55590.66731.61000.145*
H19B0.61940.75381.62970.145*
C200.4504 (19)0.7450 (17)1.6984 (14)0.145 (8)
H20A0.46100.69811.75010.218*
H20B0.38240.72731.68790.218*
H20C0.44520.81451.70700.218*
C210.8774 (14)1.0941 (13)0.8843 (11)0.098 (5)
H21A0.95131.06690.88590.117*
H21B0.85961.07360.83600.117*
C220.8853 (17)1.2086 (15)0.8628 (13)0.125 (7)
H22A0.90071.23010.91160.150*
H22B0.81271.23660.85820.150*
C230.9729 (17)1.2552 (16)0.7797 (14)0.127 (7)
H23A0.97581.32900.77580.152*
H23B1.04531.22700.78480.152*
C240.9587 (17)1.2402 (16)0.6965 (14)0.125 (7)
H24A0.88111.25430.69620.150*
H24B0.97351.16830.69350.150*
C251.0353 (18)1.3088 (16)0.6151 (15)0.131 (7)
H25A1.01411.38040.61470.158*
H25B1.11201.30100.61940.158*
C261.0324 (18)1.2861 (17)0.5299 (15)0.131 (7)
H26A0.95571.29260.52600.157*
H26B1.05541.21500.52960.157*
C271.108 (2)1.3568 (18)0.4499 (16)0.144 (8)
H27A1.08231.42740.44940.173*
H27B1.18341.35270.45590.173*
C281.111 (2)1.3339 (19)0.3636 (17)0.166 (10)
H28A1.16361.38010.31700.249*
H28B1.03791.34310.35470.249*
H28C1.13501.26370.36350.249*
C290.5414 (11)0.7814 (10)1.0901 (9)0.068 (4)
H29A0.55120.71281.07780.082*
H29B0.60740.79571.10620.082*
C300.4425 (13)0.7758 (12)1.1704 (10)0.083 (4)
H30A0.37590.75641.15760.099*
H30B0.42970.84381.18370.099*
C310.4592 (14)0.6980 (12)1.2516 (11)0.089 (5)
H31A0.47440.63061.23740.107*
H31B0.52490.71871.26500.107*
C320.3609 (15)0.6884 (13)1.3323 (11)0.101 (5)
H32A0.29540.66601.31980.122*
H32B0.34460.75581.34630.122*
C330.3816 (16)0.6122 (14)1.4119 (12)0.109 (6)
H33A0.39440.54431.39840.131*
H33B0.44970.63271.42190.131*
C340.2882 (17)0.6041 (16)1.4950 (13)0.121 (6)
H34A0.22000.58151.48650.145*
H34B0.27420.67171.50910.145*
C350.3176 (18)0.5265 (16)1.5727 (14)0.131 (7)
H35A0.31700.45651.56430.157*
H35B0.39240.54121.57450.157*
C360.232 (2)0.5354 (19)1.6591 (16)0.169 (10)
H36A0.24960.48651.70710.253*
H36B0.15800.52111.65690.253*
H36C0.23420.60421.66790.253*
C370.5683 (10)0.9247 (10)0.8349 (8)0.061 (3)
H37A0.53800.86770.82020.073*
H37B0.52080.98400.82300.073*
C380.6816 (11)0.9497 (11)0.7698 (9)0.074 (4)
H38A0.72790.88820.77350.088*
H38B0.71741.00230.78580.088*
C390.6774 (13)0.9875 (12)0.6759 (10)0.086 (4)
H39A0.63940.93500.66170.104*
H39B0.63051.04870.67350.104*
C400.7846 (15)1.0136 (14)0.6054 (11)0.104 (5)
H40A0.83130.95230.60580.124*
H40B0.82381.06570.61920.124*
C410.7724 (15)1.0529 (15)0.5138 (12)0.109 (6)
H41A0.72361.00520.50400.131*
H41B0.73411.11890.51210.131*
C420.8757 (16)1.0673 (16)0.4391 (13)0.120 (7)
H42A0.91271.00090.43800.144*
H42B0.92641.11310.44900.144*
C430.8560 (17)1.1118 (17)0.3492 (13)0.127 (7)
H43A0.80581.06540.33940.153*
H43B0.81781.17750.35100.153*
C440.9569 (19)1.1282 (19)0.2737 (15)0.165 (10)
H44A0.93571.15560.22040.247*
H44B0.99491.06360.27010.247*
H44C1.00621.17630.28110.247*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0267 (4)0.0374 (4)0.0702 (6)0.0005 (3)0.0202 (4)0.0176 (4)
Sn20.0282 (4)0.0306 (4)0.0502 (5)0.0008 (3)0.0144 (3)0.0113 (3)
N10.038 (5)0.040 (5)0.078 (7)0.002 (4)0.030 (5)0.020 (5)
N20.065 (7)0.048 (6)0.094 (9)0.010 (5)0.029 (6)0.038 (6)
N30.038 (5)0.044 (5)0.085 (8)0.000 (4)0.028 (5)0.017 (5)
N40.070 (8)0.049 (6)0.152 (12)0.008 (6)0.056 (8)0.043 (7)
O10.037 (4)0.036 (4)0.073 (5)0.004 (3)0.021 (4)0.020 (4)
O20.046 (5)0.054 (5)0.113 (8)0.004 (4)0.037 (5)0.035 (5)
O30.041 (4)0.044 (4)0.083 (6)0.003 (3)0.031 (4)0.023 (4)
O40.042 (4)0.044 (4)0.083 (6)0.002 (4)0.031 (4)0.023 (4)
O50.030 (4)0.027 (3)0.064 (5)0.003 (3)0.025 (3)0.010 (3)
C10.053 (7)0.050 (7)0.062 (8)0.013 (6)0.022 (6)0.033 (6)
C20.049 (7)0.057 (7)0.072 (9)0.000 (6)0.031 (6)0.020 (6)
C30.051 (8)0.057 (8)0.078 (9)0.001 (6)0.024 (7)0.019 (7)
C40.053 (8)0.052 (7)0.072 (9)0.001 (6)0.025 (7)0.021 (6)
C50.053 (8)0.053 (7)0.077 (9)0.007 (6)0.027 (7)0.024 (7)
C60.075 (10)0.061 (8)0.093 (11)0.008 (7)0.032 (8)0.027 (8)
C70.040 (6)0.044 (6)0.082 (9)0.002 (5)0.031 (6)0.023 (6)
C80.044 (7)0.044 (6)0.079 (9)0.007 (5)0.029 (6)0.026 (6)
C90.055 (8)0.047 (7)0.099 (11)0.010 (6)0.022 (7)0.025 (7)
C100.056 (8)0.046 (7)0.087 (10)0.004 (6)0.028 (7)0.025 (7)
C110.056 (8)0.049 (7)0.087 (10)0.001 (6)0.028 (7)0.024 (7)
C120.081 (10)0.058 (8)0.102 (12)0.011 (7)0.041 (9)0.029 (8)
C130.072 (9)0.075 (9)0.080 (10)0.000 (8)0.034 (8)0.020 (8)
C140.079 (11)0.084 (10)0.085 (11)0.004 (8)0.036 (9)0.016 (9)
C150.086 (11)0.088 (11)0.088 (12)0.000 (9)0.032 (10)0.015 (9)
C160.095 (13)0.098 (12)0.094 (13)0.002 (10)0.030 (11)0.014 (10)
C170.102 (14)0.103 (13)0.099 (14)0.003 (11)0.028 (11)0.012 (11)
C180.109 (15)0.112 (14)0.103 (15)0.006 (12)0.026 (12)0.011 (12)
C190.118 (17)0.122 (16)0.109 (16)0.007 (13)0.022 (13)0.008 (13)
C200.14 (2)0.15 (2)0.121 (18)0.015 (16)0.015 (15)0.012 (15)
C210.085 (12)0.093 (12)0.103 (13)0.013 (10)0.011 (10)0.015 (10)
C220.109 (15)0.117 (16)0.120 (17)0.015 (13)0.002 (13)0.005 (13)
C230.112 (16)0.122 (16)0.120 (18)0.017 (13)0.005 (14)0.005 (14)
C240.109 (16)0.124 (16)0.119 (18)0.017 (13)0.008 (14)0.007 (14)
C250.116 (17)0.130 (17)0.122 (18)0.016 (14)0.008 (14)0.003 (15)
C260.116 (17)0.130 (17)0.120 (18)0.015 (14)0.007 (14)0.006 (15)
C270.131 (19)0.14 (2)0.13 (2)0.016 (16)0.008 (16)0.004 (17)
C280.15 (2)0.17 (2)0.14 (2)0.020 (18)0.001 (18)0.008 (19)
C290.066 (9)0.067 (8)0.080 (10)0.002 (7)0.029 (8)0.019 (7)
C300.080 (11)0.081 (10)0.089 (12)0.000 (8)0.029 (9)0.015 (9)
C310.091 (12)0.089 (11)0.090 (12)0.006 (9)0.031 (10)0.014 (10)
C320.101 (14)0.098 (13)0.098 (14)0.003 (11)0.026 (11)0.010 (11)
C330.108 (15)0.108 (14)0.103 (15)0.007 (12)0.026 (12)0.008 (12)
C340.120 (16)0.118 (16)0.111 (16)0.006 (13)0.023 (13)0.007 (13)
C350.126 (18)0.128 (17)0.117 (18)0.006 (14)0.017 (14)0.004 (14)
C360.16 (2)0.17 (2)0.14 (2)0.017 (19)0.009 (18)0.005 (18)
C370.056 (8)0.062 (8)0.075 (9)0.005 (6)0.026 (7)0.022 (7)
C380.066 (9)0.075 (9)0.081 (11)0.005 (8)0.021 (8)0.018 (8)
C390.079 (11)0.094 (11)0.083 (12)0.011 (9)0.019 (9)0.017 (9)
C400.093 (13)0.108 (14)0.097 (14)0.011 (11)0.014 (11)0.009 (11)
C410.100 (14)0.115 (14)0.098 (15)0.013 (11)0.012 (12)0.011 (12)
C420.108 (15)0.125 (16)0.106 (16)0.013 (13)0.010 (13)0.006 (13)
C430.115 (17)0.135 (18)0.108 (17)0.015 (14)0.009 (14)0.007 (14)
C440.14 (2)0.18 (2)0.13 (2)0.017 (18)0.002 (17)0.002 (17)
Geometric parameters (Å, º) top
Sn1—O51.993 (6)C21—H21B0.9700
Sn1—C212.133 (16)C22—C231.50 (2)
Sn1—C132.135 (13)C22—H22A0.9700
Sn1—O4i2.158 (7)C22—H22B0.9700
Sn1—O12.202 (6)C23—C241.47 (2)
Sn2—C372.090 (12)C23—H23A0.9700
Sn2—C292.093 (13)C23—H23B0.9700
Sn2—O5i2.111 (6)C24—C251.52 (2)
Sn2—O52.151 (6)C24—H24A0.9700
Sn2—O12.455 (7)C24—H24B0.9700
Sn2—O32.472 (7)C25—C261.49 (3)
Sn2—N12.829 (9)C25—H25A0.9700
N1—C21.300 (13)C25—H25B0.9700
N1—C51.334 (13)C26—C271.51 (3)
N2—C41.313 (14)C26—H26A0.9700
N2—C31.343 (14)C26—H26B0.9700
N3—C81.334 (13)C27—C281.49 (3)
N3—C111.345 (14)C27—H27A0.9700
N4—C101.229 (15)C27—H27B0.9700
N4—C91.326 (15)C28—H28A0.9600
O1—C11.363 (13)C28—H28B0.9600
O2—C11.189 (12)C28—H28C0.9600
O3—C71.231 (12)C29—C301.503 (19)
O4—C71.326 (12)C29—H29A0.9700
O4—Sn1i2.158 (7)C29—H29B0.9700
O5—Sn2i2.111 (6)C30—C311.532 (19)
C1—C21.500 (14)C30—H30A0.9700
C2—C31.418 (16)C30—H30B0.9700
C3—H30.9300C31—C321.50 (2)
C4—C51.336 (16)C31—H31A0.9700
C4—C61.504 (15)C31—H31B0.9700
C5—H50.9300C32—C331.52 (2)
C6—H6A0.9600C32—H32A0.9700
C6—H6B0.9600C32—H32B0.9700
C6—H6C0.9600C33—C341.49 (2)
C7—C81.411 (14)C33—H33A0.9700
C8—C91.370 (15)C33—H33B0.9700
C9—H90.9300C34—C351.55 (2)
C10—C111.395 (16)C34—H34A0.9700
C10—C121.478 (15)C34—H34B0.9700
C11—H110.9300C35—C361.52 (3)
C12—H12A0.9600C35—H35A0.9700
C12—H12B0.9600C35—H35B0.9700
C12—H12C0.9600C36—H36A0.9600
C13—C141.508 (19)C36—H36B0.9600
C13—H13A0.9700C36—H36C0.9600
C13—H13B0.9700C37—C381.500 (17)
C14—C151.526 (19)C37—H37A0.9700
C14—H14A0.9700C37—H37B0.9700
C14—H14B0.9700C38—C391.503 (19)
C15—C161.52 (2)C38—H38A0.9700
C15—H15A0.9700C38—H38B0.9700
C15—H15B0.9700C39—C401.48 (2)
C16—C171.51 (2)C39—H39A0.9700
C16—H16A0.9700C39—H39B0.9700
C16—H16B0.9700C40—C411.50 (2)
C17—C181.52 (2)C40—H40A0.9700
C17—H17A0.9700C40—H40B0.9700
C17—H17B0.9700C41—C421.48 (2)
C18—C191.53 (2)C41—H41A0.9700
C18—H18A0.9700C41—H41B0.9700
C18—H18B0.9700C42—C431.52 (2)
C19—C201.53 (2)C42—H42A0.9700
C19—H19A0.9700C42—H42B0.9700
C19—H19B0.9700C43—C441.46 (2)
C20—H20A0.9600C43—H43A0.9700
C20—H20B0.9600C43—H43B0.9700
C20—H20C0.9600C44—H44A0.9600
C21—C221.48 (2)C44—H44B0.9600
C21—H21A0.9700C44—H44C0.9600
O5—Sn1—C21114.0 (5)H21A—C21—H21B107.1
O5—Sn1—C13116.2 (4)C21—C22—C23115.4 (18)
C21—Sn1—C13129.3 (6)C21—C22—H22A108.4
O5—Sn1—O4i92.8 (3)C23—C22—H22A108.4
C21—Sn1—O4i95.7 (5)C21—C22—H22B108.4
C13—Sn1—O4i88.1 (4)C23—C22—H22B108.4
O5—Sn1—O175.7 (2)H22A—C22—H22B107.5
C21—Sn1—O192.0 (5)C24—C23—C22117.1 (19)
C13—Sn1—O194.2 (4)C24—C23—H23A108.0
O4i—Sn1—O1168.0 (3)C22—C23—H23A108.0
C37—Sn2—C29152.6 (5)C24—C23—H23B108.0
C37—Sn2—O5i96.3 (4)C22—C23—H23B108.0
C29—Sn2—O5i104.8 (4)H23A—C23—H23B107.3
C37—Sn2—O5102.9 (4)C23—C24—C25113.4 (19)
C29—Sn2—O599.4 (4)C23—C24—H24A108.9
O5i—Sn2—O574.7 (3)C25—C24—H24A108.9
C37—Sn2—O191.0 (4)C23—C24—H24B108.9
C29—Sn2—O182.9 (4)C25—C24—H24B108.9
O5i—Sn2—O1142.4 (2)H24A—C24—H24B107.7
O5—Sn2—O167.8 (2)C26—C25—C24114.3 (19)
C37—Sn2—O383.7 (4)C26—C25—H25A108.7
C29—Sn2—O381.0 (4)C24—C25—H25A108.7
O5i—Sn2—O384.7 (2)C26—C25—H25B108.7
O5—Sn2—O3158.9 (3)C24—C25—H25B108.7
O1—Sn2—O3132.8 (2)H25A—C25—H25B107.6
C37—Sn2—N178.1 (4)C25—C26—C27113 (2)
C29—Sn2—N175.8 (4)C25—C26—H26A108.9
O5i—Sn2—N1158.1 (2)C27—C26—H26A108.9
O5—Sn2—N1127.1 (2)C25—C26—H26B108.9
O1—Sn2—N159.3 (2)C27—C26—H26B108.9
O3—Sn2—N173.7 (2)H26A—C26—H26B107.7
C2—N1—C5114.8 (10)C28—C27—C26115 (2)
C2—N1—Sn2115.7 (7)C28—C27—H27A108.5
C5—N1—Sn2129.5 (7)C26—C27—H27A108.5
C4—N2—C3116.1 (10)C28—C27—H27B108.5
C8—N3—C11116.2 (9)C26—C27—H27B108.5
C10—N4—C9117.3 (11)H27A—C27—H27B107.5
C1—O1—Sn1125.7 (6)C27—C28—H28A109.5
C1—O1—Sn2132.8 (6)C27—C28—H28B109.5
Sn1—O1—Sn298.3 (3)H28A—C28—H28B109.5
C7—O3—Sn2135.6 (7)C27—C28—H28C109.5
C7—O4—Sn1i137.4 (7)H28A—C28—H28C109.5
Sn1—O5—Sn2i137.1 (3)H28B—C28—H28C109.5
Sn1—O5—Sn2116.6 (3)C30—C29—Sn2120.7 (9)
Sn2i—O5—Sn2105.3 (3)C30—C29—H29A107.2
O2—C1—O1122.6 (9)Sn2—C29—H29A107.2
O2—C1—C2127.3 (11)C30—C29—H29B107.2
O1—C1—C2109.4 (9)Sn2—C29—H29B107.2
N1—C2—C3121.7 (10)H29A—C29—H29B106.8
N1—C2—C1120.5 (11)C29—C30—C31112.8 (13)
C3—C2—C1117.5 (10)C29—C30—H30A109.0
N2—C3—C2120.7 (11)C31—C30—H30A109.0
N2—C3—H3119.6C29—C30—H30B109.0
C2—C3—H3119.6C31—C30—H30B109.0
N2—C4—C5121.5 (10)H30A—C30—H30B107.8
N2—C4—C6116.8 (11)C32—C31—C30114.3 (14)
C5—C4—C6121.6 (11)C32—C31—H31A108.7
N1—C5—C4125.0 (11)C30—C31—H31A108.7
N1—C5—H5117.5C32—C31—H31B108.7
C4—C5—H5117.5C30—C31—H31B108.7
C4—C6—H6A109.5H31A—C31—H31B107.6
C4—C6—H6B109.5C31—C32—C33112.7 (15)
H6A—C6—H6B109.5C31—C32—H32A109.0
C4—C6—H6C109.5C33—C32—H32A109.0
H6A—C6—H6C109.5C31—C32—H32B109.0
H6B—C6—H6C109.5C33—C32—H32B109.0
O3—C7—O4118.4 (9)H32A—C32—H32B107.8
O3—C7—C8125.3 (10)C34—C33—C32114.6 (17)
O4—C7—C8116.1 (9)C34—C33—H33A108.6
N3—C8—C9116.8 (9)C32—C33—H33A108.6
N3—C8—C7117.2 (10)C34—C33—H33B108.6
C9—C8—C7126.0 (11)C32—C33—H33B108.6
N4—C9—C8126.0 (11)H33A—C33—H33B107.6
N4—C9—H9117.0C33—C34—C35110.9 (17)
C8—C9—H9117.0C33—C34—H34A109.5
N4—C10—C11120.5 (11)C35—C34—H34A109.5
N4—C10—C12117.9 (12)C33—C34—H34B109.5
C11—C10—C12121.6 (12)C35—C34—H34B109.5
N3—C11—C10123.1 (11)H34A—C34—H34B108.0
N3—C11—H11118.4C36—C35—C34109.5 (19)
C10—C11—H11118.4C36—C35—H35A109.8
C10—C12—H12A109.5C34—C35—H35A109.8
C10—C12—H12B109.5C36—C35—H35B109.8
H12A—C12—H12B109.5C34—C35—H35B109.8
C10—C12—H12C109.5H35A—C35—H35B108.2
H12A—C12—H12C109.5C35—C36—H36A109.5
H12B—C12—H12C109.5C35—C36—H36B109.5
C14—C13—Sn1114.5 (9)H36A—C36—H36B109.5
C14—C13—H13A108.6C35—C36—H36C109.5
Sn1—C13—H13A108.6H36A—C36—H36C109.5
C14—C13—H13B108.6H36B—C36—H36C109.5
Sn1—C13—H13B108.6C38—C37—Sn2123.2 (9)
H13A—C13—H13B107.6C38—C37—H37A106.5
C13—C14—C15114.1 (13)Sn2—C37—H37A106.5
C13—C14—H14A108.7C38—C37—H37B106.5
C15—C14—H14A108.7Sn2—C37—H37B106.5
C13—C14—H14B108.7H37A—C37—H37B106.5
C15—C14—H14B108.7C37—C38—C39113.7 (12)
H14A—C14—H14B107.6C37—C38—H38A108.8
C16—C15—C14112.7 (13)C39—C38—H38A108.8
C16—C15—H15A109.0C37—C38—H38B108.8
C14—C15—H15A109.0C39—C38—H38B108.8
C16—C15—H15B109.0H38A—C38—H38B107.7
C14—C15—H15B109.0C40—C39—C38118.6 (14)
H15A—C15—H15B107.8C40—C39—H39A107.7
C17—C16—C15113.2 (14)C38—C39—H39A107.7
C17—C16—H16A108.9C40—C39—H39B107.7
C15—C16—H16A108.9C38—C39—H39B107.7
C17—C16—H16B108.9H39A—C39—H39B107.1
C15—C16—H16B108.9C39—C40—C41115.1 (15)
H16A—C16—H16B107.7C39—C40—H40A108.5
C16—C17—C18112.6 (16)C41—C40—H40A108.5
C16—C17—H17A109.1C39—C40—H40B108.5
C18—C17—H17A109.1C41—C40—H40B108.5
C16—C17—H17B109.1H40A—C40—H40B107.5
C18—C17—H17B109.1C42—C41—C40118.0 (17)
H17A—C17—H17B107.8C42—C41—H41A107.8
C17—C18—C19111.0 (16)C40—C41—H41A107.8
C17—C18—H18A109.4C42—C41—H41B107.8
C19—C18—H18A109.4C40—C41—H41B107.8
C17—C18—H18B109.4H41A—C41—H41B107.2
C19—C18—H18B109.4C41—C42—C43114.4 (17)
H18A—C18—H18B108.0C41—C42—H42A108.7
C20—C19—C18109.9 (17)C43—C42—H42A108.7
C20—C19—H19A109.7C41—C42—H42B108.7
C18—C19—H19A109.7C43—C42—H42B108.7
C20—C19—H19B109.7H42A—C42—H42B107.6
C18—C19—H19B109.7C44—C43—C42116 (2)
H19A—C19—H19B108.2C44—C43—H43A108.3
C19—C20—H20A109.5C42—C43—H43A108.3
C19—C20—H20B109.5C44—C43—H43B108.3
H20A—C20—H20B109.5C42—C43—H43B108.3
C19—C20—H20C109.5H43A—C43—H43B107.4
H20A—C20—H20C109.5C43—C44—H44A109.5
H20B—C20—H20C109.5C43—C44—H44B109.5
C22—C21—Sn1118.2 (13)H44A—C44—H44B109.5
C22—C21—H21A107.8C43—C44—H44C109.5
Sn1—C21—H21A107.8H44A—C44—H44C109.5
C22—C21—H21B107.8H44B—C44—H44C109.5
Sn1—C21—H21B107.8
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Sn4(C8H17)8O2(C6H5N2O2)4]
Mr1960.97
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.406 (4), 13.282 (4), 16.223 (5)
α, β, γ (°)76.623 (4), 73.361 (4), 86.522 (3)
V3)2491.7 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.63 × 0.54 × 0.49
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.602, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
12764, 8613, 4935
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.223, 1.11
No. of reflections8613
No. of parameters496
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0784P)2 + 14.9991P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.10, 1.14

Computer programs: SMART (Bruker 1998), SAINT (Bruker 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Sn1—O51.993 (6)Sn2—C292.093 (13)
Sn1—C212.133 (16)Sn2—O5i2.111 (6)
Sn1—C132.135 (13)Sn2—O52.151 (6)
Sn1—O4i2.158 (7)Sn2—O12.455 (7)
Sn1—O12.202 (6)Sn2—O32.472 (7)
Sn2—C372.090 (12)Sn2—N12.829 (9)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

We acknowledge the financial support of the Science Foundation of Shandong.

References

First citationBruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873–876.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.  CSD CrossRef CAS Web of Science Google Scholar
First citationYin, H. D., Wang, C. H. & Ma, C. L. (2003). Chin. J. Org. Chem. 23, 475–478.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds