supplementary materials


Acta Cryst. (2010). E66, o185    [ doi:10.1107/S160053680905332X ]

1,10-Phenanthrolin-1-ium hydrogen (S,S)-tartrate trihydrate and a correction

Z. Derikvand and M. M. Olmstead

Abstract top

The title structure, C12H9N2+·C4H5O6-·3H2O, shows that one of the protons of D-tartaric acid has been transferred to 1,10-phenanthroline. The D-hydrogen tartrate anions are joined together in a head-to-tail fashion via a short hydrogen bond with donor-acceptor distance of 2.4554 (12) Å, unsymmetrical O-H distances of 1.01 (4) Å and 1.45 (4) Å, and a 174 (4)° O-H-O bond angle. The phenanthrolinium rings are [pi]-stacked with an average separation of 3.58 (11) Å. The structural report corrects a previous report in the literature [Wang et al. (2006). Acta Cryst. E62, o2508-o2509] of the isostructural L-hydrogen tartrate enantiomer in which the proton transfer and short hydrogen bond were missed.

Comment top

Tartaric acid is a colorless, diprotic organic acid that occurs naturally in many plants, particularly grapes, bananas, and tamarinds, and is one of the main acids found in wine. It is added to other foods to give a sour taste, and is used as an antioxidant. Many proton transfer compounds of tartaric acid and various bases have been reported, for example, (Paixão et al., 1999; Bai et al., 2005; Zhang et al., 2006; Suresh et al., 2006; Wang et al., 2008; Su et al., 2009). The title structure contains a cation of protonated 1,10-phenanthroline, an anion of mono-deprotonated D-tartaric acid, and three water molecules (Fig. 1). Thus, the crystal structure shows that one of the protons of the tartaric acid carboxylic groups has been transferred to one of the nitrogen atoms of the 1,10-phenanthroline molecule. A portion of the hydrogen bonding motif involving the anions, cations and water molecules is presented in Fig. 2; details of the O—H···O and N—H···O hydrogen bonds are given in Table 1. Fig. 2 also shows how the 1,10-phenanthrolinium rings are π-stacked such that they are perpendicular to the chain of tartrate anions that run along the a axis. The average perpendicular distance between the plane of N1/N2/C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11/C12 and the 14 atoms at ii = 1/2 + x, 3/2 - y, 1 - z of the stacked phenanthroline ring is 3.58 (11) Å. The tartrate anions are connected head-to-tail by a short hydrogen bond between H2A, bonded to O2, and O6i of the anion at i = x - 1, y, z. The O2—H2A distance is 1.01 (4) Å, H2A—O6i is 1.45 (4) Å and O2···O6i is 2.4554 (12) Å. The O2—H2A—O6i angle is 174 (4)°. Electrostatic considerations, together with the use of resonance structures, could be used to explain the short hydrogen bond. Additionally, the existence of a number of supporting hydrogen bonds could be a factor, and these are depicted in Fig. 3. A similar head-to-tail arrangement with a short donor- acceptor distance is seen in some other hydrogen tartrate structures (Paixão et al., 1999; Zhang et al., 2006). The geometry of the hydrogen atom, H2A, that is involved in the short hydrogen bond has larger standard uncertainties than other hydrogen atoms in the structure. The larger uncertainty can be accounted for by examination of a plot of difference electron density (Fig. 4) (EDEN, Sheldrick (2008)), which shows that H2A resides in a shallow potential well that has a single minimum close to O2 but tails off towards O6i.

A previous structural determination of the isostructural L-tartrate enantiomer (II) (Wang et al., 2006) missed the proton transfer and identified the compound as 1,10-phenanthroline (2R,3R)-tartaric acid. We have examined their data and confirmed that the proton transfer did occur, and refinement of the structure using the model of the title compound results in lower R values. Interestingly, a subsequent paper on the quinoline analog by Smith et al., 2006, expressed surprise that the proton in (II) was not transferred: "···the absence of transfer in the L-tartaric acid-1,10-phenanthroline compound reported by Wang et al. (2006) when compared with the structurally similar [quinolinium] is not understood, considering that the pKa value for 1,10-phenanthroline (4.86) is very close to that of quinoline (4.81)." We note that, in the structure of (II), the details of the short hydrogen bond are not revealed because tartaric acid O—H distance restraints of 0.82 (1) Å were applied, and also because the acceptor O atom has the misplaced H atom. In the refinement of the title compound, hydrogen atoms were freely refined. In (II), data were collected at 293 (2) K, and the data/parameter ratio is 7.34. In the title compound, data were collected at 90 (2) K, and the data/parameter ratio is 10.03.

Related literature top

For related proton-transfer hydrogen tartrate structures, see: Bai et al. (2005); Paixão et al. (1999); Smith et al. (2006); Su et al. (2009); Suresh et al. (2006); Wang et al. (2006, 2008); Zhang et al. (2006).

Experimental top

The reaction between solutions of D-tartaric acid (7 mg, 1 mmol) in water (10 ml) and 1,10-phenanthroline (9 mg, 1 mmol) in methanol (5 ml) in a 1:1 molar ratio gave colorless rod crystals after slow evaporation of the solvent at room temperature.

Refinement top

Friedel opposites were merged. The absolute configuration followed from the use of D-tartaric acid as a starting material. Hydrogen atoms were located in a difference Fourier map and freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit of the title compound. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view showing how the phenanthrolinium ions pack together in a parallel fashion while the tartrate anions string together via a strong hydrogen bond along the a direction of the crystal. Symmetry code: (i) x - 1, y, z.
[Figure 3] Fig. 3. The hydrogen bonding interactions that support the strong hydrogen bonding interaction between tartrate anions. Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, y - 1/2, 1.5 - z; (iii) -x, y - 1/2, 1.5 - z.
[Figure 4] Fig. 4. A plot of electron density contours showing the difference Fourier map for H2A, the hydrogen atom involved in the short hydrogen bond. The maximum density contour is 0.45 e/Å3.
(I) top
Crystal data top
C12H9N2+·C4H5O6·3H2OF(000) = 808
Mr = 384.34Dx = 1.476 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9999 reflections
a = 7.1163 (14) Åθ = 2.8–31.5°
b = 12.482 (3) ŵ = 0.12 mm1
c = 19.466 (4) ÅT = 90 K
V = 1729.2 (6) Å3Rod, colourless
Z = 40.42 × 0.21 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
3251 independent reflections
Radiation source: fine-focus sealed tube3149 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 8.3 pixels mm-1θmax = 31.6°, θmin = 1.9°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.880, Tmax = 0.984l = 2828
39094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.089All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1713P]
where P = (Fo2 + 2Fc2)/3
3251 reflections(Δ/σ)max = 0.003
324 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H9N2+·C4H5O6·3H2OV = 1729.2 (6) Å3
Mr = 384.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1163 (14) ŵ = 0.12 mm1
b = 12.482 (3) ÅT = 90 K
c = 19.466 (4) Å0.42 × 0.21 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3149 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.984Rint = 0.027
39094 measured reflectionsθmax = 31.6°
Refinement top
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.089Δρmax = 0.41 e Å3
S = 1.06Δρmin = 0.17 e Å3
3251 reflectionsAbsolute structure: ?
324 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02434 (15)0.28085 (14)0.60625 (5)0.0387 (3)
O20.01282 (11)0.22520 (7)0.71533 (4)0.01530 (16)
H2A0.155 (5)0.227 (3)0.7139 (19)0.082 (11)*
O30.34399 (12)0.27724 (8)0.59021 (4)0.01825 (18)
H3A0.266 (3)0.2529 (17)0.5600 (11)0.025 (5)*
O40.29691 (13)0.43589 (7)0.69506 (5)0.01723 (17)
H4A0.202 (4)0.450 (2)0.7164 (15)0.052 (7)*
O50.65945 (13)0.40940 (7)0.69497 (5)0.02051 (18)
O60.64269 (11)0.23538 (7)0.71823 (4)0.01439 (15)
N10.56039 (18)0.85195 (8)0.60703 (5)0.01821 (19)
N20.55402 (17)0.64831 (8)0.55452 (5)0.01820 (19)
H2B0.558 (3)0.6546 (15)0.6011 (10)0.020 (4)*
C10.5526 (2)0.54779 (10)0.53258 (7)0.0244 (3)
H10.545 (4)0.494 (2)0.5654 (13)0.038 (6)*
C20.5479 (2)0.52505 (11)0.46232 (7)0.0267 (3)
H20.545 (4)0.4546 (18)0.4486 (12)0.033 (5)*
C30.5443 (2)0.60764 (12)0.41615 (7)0.0238 (2)
H30.533 (4)0.590 (2)0.3720 (13)0.042 (6)*
C40.54614 (19)0.71407 (10)0.43933 (6)0.0194 (2)
C50.5432 (2)0.80340 (13)0.39336 (6)0.0263 (3)
H50.533 (5)0.792 (3)0.3465 (16)0.071 (9)*
C60.5492 (2)0.90440 (12)0.41791 (6)0.0266 (3)
H60.549 (4)0.966 (2)0.3898 (14)0.053 (8)*
C70.55687 (19)0.92492 (10)0.49056 (6)0.0190 (2)
C80.5681 (2)1.02891 (10)0.51766 (7)0.0217 (2)
H80.568 (3)1.0922 (17)0.4873 (10)0.026 (5)*
C90.5760 (2)1.04196 (10)0.58747 (7)0.0206 (2)
H90.584 (3)1.1120 (18)0.6092 (10)0.029 (5)*
C100.5697 (2)0.95135 (10)0.63030 (6)0.0201 (2)
H100.577 (3)0.9670 (17)0.6820 (11)0.027 (5)*
C110.55581 (17)0.83917 (9)0.53766 (5)0.01526 (19)
C120.55133 (17)0.73284 (9)0.51062 (6)0.0157 (2)
C130.06195 (15)0.25433 (10)0.65712 (5)0.01487 (19)
C140.27564 (14)0.25118 (9)0.65602 (5)0.01263 (18)
H140.308 (3)0.1803 (15)0.6702 (9)0.018 (4)*
C150.35517 (14)0.33050 (8)0.70860 (5)0.01159 (17)
H150.316 (3)0.3068 (14)0.7552 (9)0.017 (4)*
C160.57000 (15)0.32740 (8)0.70659 (5)0.01187 (18)
O70.57458 (15)0.62117 (7)0.68894 (5)0.01850 (17)
H7A0.491 (3)0.6571 (19)0.7160 (11)0.034 (6)*
H7B0.549 (4)0.558 (2)0.6918 (12)0.040 (6)*
O80.31974 (13)0.30315 (9)0.52265 (4)0.02028 (18)
H8A0.422 (4)0.2882 (19)0.5431 (12)0.035 (6)*
H8B0.231 (4)0.301 (2)0.5572 (12)0.041 (6)*
O90.97193 (13)0.49415 (8)0.75731 (5)0.01928 (18)
H9A0.952 (4)0.563 (2)0.7552 (14)0.047 (7)*
H9B0.883 (4)0.4694 (19)0.7395 (13)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0136 (4)0.0860 (11)0.0166 (4)0.0040 (5)0.0014 (3)0.0110 (5)
O20.0102 (3)0.0187 (4)0.0171 (3)0.0010 (3)0.0016 (3)0.0048 (3)
O30.0133 (3)0.0298 (4)0.0117 (3)0.0028 (3)0.0021 (3)0.0019 (3)
O40.0153 (3)0.0125 (3)0.0240 (4)0.0043 (3)0.0014 (3)0.0015 (3)
O50.0138 (3)0.0135 (3)0.0343 (5)0.0021 (3)0.0009 (3)0.0033 (3)
O60.0097 (3)0.0125 (3)0.0209 (4)0.0009 (3)0.0011 (3)0.0031 (3)
N10.0262 (5)0.0151 (4)0.0134 (4)0.0032 (4)0.0004 (4)0.0002 (3)
N20.0240 (5)0.0154 (4)0.0152 (4)0.0024 (4)0.0009 (4)0.0013 (3)
C10.0332 (7)0.0167 (5)0.0234 (6)0.0027 (5)0.0030 (5)0.0039 (4)
C20.0333 (7)0.0210 (5)0.0259 (6)0.0034 (6)0.0050 (5)0.0095 (5)
C30.0255 (6)0.0276 (6)0.0182 (5)0.0008 (5)0.0021 (5)0.0092 (4)
C40.0208 (5)0.0238 (5)0.0138 (4)0.0007 (5)0.0007 (4)0.0037 (4)
C50.0347 (7)0.0318 (6)0.0124 (4)0.0030 (6)0.0003 (5)0.0008 (4)
C60.0376 (7)0.0282 (6)0.0140 (5)0.0036 (6)0.0008 (5)0.0061 (4)
C70.0223 (5)0.0198 (5)0.0148 (4)0.0010 (5)0.0004 (4)0.0041 (4)
C80.0266 (6)0.0173 (5)0.0214 (5)0.0009 (5)0.0001 (5)0.0052 (4)
C90.0262 (5)0.0139 (4)0.0217 (5)0.0034 (5)0.0011 (5)0.0016 (4)
C100.0292 (6)0.0153 (4)0.0158 (4)0.0038 (5)0.0011 (4)0.0006 (4)
C110.0173 (5)0.0148 (4)0.0137 (4)0.0013 (4)0.0003 (4)0.0006 (3)
C120.0168 (5)0.0168 (5)0.0135 (4)0.0006 (4)0.0005 (4)0.0012 (4)
C130.0097 (4)0.0206 (5)0.0143 (4)0.0004 (4)0.0003 (3)0.0016 (4)
C140.0093 (4)0.0161 (4)0.0124 (4)0.0003 (4)0.0004 (3)0.0015 (3)
C150.0098 (4)0.0116 (4)0.0134 (4)0.0011 (3)0.0002 (3)0.0001 (3)
C160.0105 (4)0.0133 (4)0.0118 (4)0.0001 (4)0.0001 (3)0.0001 (3)
O70.0251 (4)0.0114 (3)0.0190 (4)0.0008 (3)0.0038 (3)0.0004 (3)
O80.0146 (4)0.0316 (5)0.0146 (3)0.0005 (4)0.0001 (3)0.0010 (3)
O90.0173 (4)0.0166 (4)0.0240 (4)0.0006 (3)0.0010 (3)0.0015 (3)
Geometric parameters (Å, °) top
O1—C131.2113 (15)C5—H50.92 (3)
O2—C131.3036 (13)C6—C71.4384 (17)
O2—H2A1.01 (4)C6—H60.95 (3)
O3—C141.4082 (13)C7—C81.4034 (18)
O3—H3A0.86 (2)C7—C111.4094 (16)
O4—C151.4043 (13)C8—C91.3696 (18)
O4—H4A0.81 (3)C8—H80.99 (2)
O5—C161.2264 (14)C9—C101.4059 (17)
O6—C161.2800 (13)C9—H90.97 (2)
N1—C101.3226 (15)C10—H101.03 (2)
N1—C111.3602 (14)C11—C121.4282 (16)
N2—C11.3254 (16)C13—C141.5214 (15)
N2—C121.3579 (15)C14—C151.5324 (15)
N2—H2B0.912 (19)C14—H140.955 (19)
C1—C21.3973 (19)C15—C161.5298 (15)
C1—H10.93 (3)C15—H150.994 (17)
C2—C31.368 (2)O7—H7A0.91 (2)
C2—H20.92 (2)O7—H7B0.81 (3)
C3—C41.4030 (18)O8—H8A0.85 (3)
C3—H30.89 (3)O8—H8B0.92 (3)
C4—C121.4079 (15)O9—H9A0.87 (3)
C4—C51.4299 (19)O9—H9B0.79 (3)
C5—C61.349 (2)
C13—O2—H2A112 (2)C8—C9—H9122.7 (12)
C14—O3—H3A108.6 (14)C10—C9—H9117.8 (12)
C15—O4—H4A111 (2)N1—C10—C9123.59 (11)
C10—N1—C11116.83 (10)N1—C10—H10121.1 (12)
C1—N2—C12122.19 (11)C9—C10—H10115.2 (12)
C1—N2—H2B113.7 (12)N1—C11—C7123.82 (11)
C12—N2—H2B124.1 (12)N1—C11—C12118.39 (10)
N2—C1—C2120.52 (12)C7—C11—C12117.79 (10)
N2—C1—H1117.8 (15)N2—C12—C4119.43 (11)
C2—C1—H1121.5 (15)N2—C12—C11119.33 (10)
C3—C2—C1119.37 (12)C4—C12—C11121.23 (10)
C3—C2—H2121.9 (14)O1—C13—O2125.45 (11)
C1—C2—H2118.7 (14)O1—C13—C14120.15 (10)
C2—C3—C4120.14 (11)O2—C13—C14114.40 (9)
C2—C3—H3116.8 (17)O3—C14—C13110.62 (9)
C4—C3—H3122.9 (17)O3—C14—C15109.32 (9)
C3—C4—C12118.35 (11)C13—C14—C15110.06 (9)
C3—C4—C5122.48 (11)O3—C14—H14113.3 (11)
C12—C4—C5119.17 (12)C13—C14—H14105.1 (13)
C6—C5—C4120.45 (11)C15—C14—H14108.4 (12)
C6—C5—H5119 (2)O4—C15—C16108.30 (9)
C4—C5—H5120 (2)O4—C15—C14111.77 (9)
C5—C6—C7121.07 (12)C16—C15—C14109.61 (9)
C5—C6—H6123.9 (16)O4—C15—H15111.5 (11)
C7—C6—H6115.1 (16)C16—C15—H15107.4 (11)
C8—C7—C11117.27 (11)C14—C15—H15108.2 (11)
C8—C7—C6122.45 (11)O5—C16—O6124.88 (10)
C11—C7—C6120.27 (12)O5—C16—C15120.16 (10)
C9—C8—C7119.03 (11)O6—C16—C15114.96 (9)
C9—C8—H8120.0 (12)H7A—O7—H7B107 (2)
C7—C8—H8121.0 (12)H8A—O8—H8B104 (2)
C8—C9—C10119.43 (11)H9A—O9—H9B104 (3)
C12—N2—C1—C20.1 (2)C1—N2—C12—C11179.10 (13)
N2—C1—C2—C30.2 (3)C3—C4—C12—N20.10 (19)
C1—C2—C3—C40.3 (2)C5—C4—C12—N2179.96 (12)
C2—C3—C4—C120.2 (2)C3—C4—C12—C11179.23 (12)
C2—C3—C4—C5179.78 (15)C5—C4—C12—C110.71 (19)
C3—C4—C5—C6178.60 (15)N1—C11—C12—N20.78 (18)
C12—C4—C5—C61.3 (2)C7—C11—C12—N2178.68 (12)
C4—C5—C6—C70.6 (3)N1—C11—C12—C4179.89 (12)
C5—C6—C7—C8178.30 (15)C7—C11—C12—C40.65 (18)
C5—C6—C7—C110.8 (2)O1—C13—C14—O32.66 (18)
C11—C7—C8—C90.5 (2)O2—C13—C14—O3176.32 (9)
C6—C7—C8—C9179.65 (14)O1—C13—C14—C15118.25 (14)
C7—C8—C9—C101.0 (2)O2—C13—C14—C1562.78 (13)
C11—N1—C10—C90.3 (2)O3—C14—C15—O462.27 (11)
C8—C9—C10—N11.5 (2)C13—C14—C15—O459.41 (12)
C10—N1—C11—C71.2 (2)O3—C14—C15—C1657.81 (11)
C10—N1—C11—C12178.18 (12)C13—C14—C15—C16179.49 (9)
C8—C7—C11—N11.7 (2)O4—C15—C16—O50.45 (14)
C6—C7—C11—N1179.15 (14)C14—C15—C16—O5122.63 (11)
C8—C7—C11—C12177.76 (12)O4—C15—C16—O6179.93 (9)
C6—C7—C11—C121.42 (19)C14—C15—C16—O657.89 (12)
C1—N2—C12—C40.2 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O6i1.01 (4)1.45 (4)2.4554 (12)174 (4)
O3—H3A···O8ii0.86 (2)1.86 (2)2.6817 (13)159 (2)
O4—H4A···O9i0.81 (3)1.90 (3)2.7102 (13)173 (3)
N2—H2B···O70.912 (19)1.763 (19)2.6426 (14)161.3 (18)
O7—H7A···O6iii0.91 (2)1.87 (2)2.7727 (13)170 (2)
O7—H7B···O50.81 (3)2.02 (3)2.7141 (14)144 (3)
O7—H7B···O40.81 (3)2.36 (3)3.0442 (14)143 (3)
O8—H8A···O3i0.85 (3)1.90 (3)2.7497 (13)171 (2)
O8—H8B···O10.92 (3)1.77 (3)2.6730 (14)165 (3)
O9—H9A···O2iii0.87 (3)2.15 (3)2.9472 (14)152 (3)
O9—H9B···O50.79 (3)1.96 (3)2.7452 (14)179 (3)
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+3/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O6i1.01 (4)1.45 (4)2.4554 (12)174 (4)
O3—H3A···O8ii0.86 (2)1.86 (2)2.6817 (13)159 (2)
O4—H4A···O9i0.81 (3)1.90 (3)2.7102 (13)173 (3)
N2—H2B···O70.912 (19)1.763 (19)2.6426 (14)161.3 (18)
O7—H7A···O6iii0.91 (2)1.87 (2)2.7727 (13)170 (2)
O7—H7B···O50.81 (3)2.02 (3)2.7141 (14)144 (3)
O7—H7B···O40.81 (3)2.36 (3)3.0442 (14)143 (3)
O8—H8A···O3i0.85 (3)1.90 (3)2.7497 (13)171 (2)
O8—H8B···O10.92 (3)1.77 (3)2.6730 (14)165 (3)
O9—H9A···O2iii0.87 (3)2.15 (3)2.9472 (14)152 (3)
O9—H9B···O50.79 (3)1.96 (3)2.7452 (14)179 (3)
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+3/2.
references
References top

Bai, G.-Y., Chen, L.-G., Li, Y., Yan, X.-L., Xing, P., Dong, C.-M., Duan, X.-M., Zhang, Y.-C. & Ge, F.-Y. (2005). Acta Cryst. E61, o1125–o1126.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Paixão, J. A., Pereira Silva, P. S., Matos Beja, A., Ramos Silva, M., de Matos Gomes, E. & Belsley, M. (1999). Acta Cryst. C55, 1287–1290.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694–o698.

Su, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933.

Suresh, J., Krishnakumar, R. V., Rajagopal, K. & Natarajan, S. (2006). Acta Cryst. E62, o3220–o3222.

Wang, X.-H., Chao, B. & Qiu, Z.-B. (2008). Acta Cryst. E64, o784.

Wang, Z.-L., Li, M.-X., Wei, L.-H. & Wang, J.-P. (2006). Acta Cryst. E62, o2508–o2509.

Zhang, Y.-C., Bai, G.-Y., Zeng, T., Li, J.-S. & Yan, X.-L. (2006). Acta Cryst. E62, o1511–o1512.