organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iso­butyl 5-methyl 2,6-di­methyl-4-(2-nitro­phen­yl)pyridine-3,5-di­carboxyl­ate

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032, Xi-An, People's Republic of China, and bDepartment of Shannxi Institute for Food and Drug Control, Zhuque Road 431,710061 Xi-An, People's Republic of China
*Correspondence e-mail: jiangru@fmmu.edu.cn

(Received 19 November 2009; accepted 3 December 2009; online 9 December 2009)

The title nitro­phenyl pyridine compound, C20H22N2O6 was synthesized as a degradation product of the hypertension medication nisoldipine. The dihedral angle between the nitro-substituted phenyl ring and the pyridine ring is 75.5 (4)°. There are a number of C—H⋯O inter­actions between symmetry-related mol­ecules>.

Related literature

For the preparation of the title compound see: Agbaba et al. (2004[Agbaba, D., Vucicevic, K. & Marinkovic, V. (2004). Chromatographia, 60, 223-227.]); Waldo & Correa (2001[Waldo, H. & Correa, J. L. S. (2001). Green Chem. 3, 296-301.]); Valentina et al. (2000[Valentina, M., Danica, A., Katarina, K. R., Jozef, C. & &Dobrila, Z. S. (2000). Farmaco, 55, 128-133.]). A derivative of the title compound, nisoldipine, has been evaluated as a calcium channel blocker with vasodilator properties, see: Ferrari et al. (2005[Ferrari, M., Ghezzi, M., Alberelli, C. & &Ambrosini, L. (2005). US Patent 2005/0240022 A1.]); Marciniec et al. (2002[Marciniec, B., Jaroszkiewicz, E. & Ogrodowczyk, M. (2002). Int. J. Pharm. 233, 207-215.]); Kazda et al. (1980[Kazda, S., Garhoff, B., Meyer, H., Schlossmann, K., Stoepel, K., Towart, R., Vater, W. & Wehinger, E. (1980). Arzneim. Forsch. Drug Res. 30, 2144-2162.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O6

  • Mr = 386.40

  • Monoclinic, P 21 /c

  • a = 8.4222 (9) Å

  • b = 16.5850 (16) Å

  • c = 14.5011 (15) Å

  • β = 102.748 (2)°

  • V = 1975.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.992

  • 10199 measured reflections

  • 3683 independent reflections

  • 2718 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.154

  • S = 1.01

  • 3683 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O4i 0.96 2.57 3.303 (3) 134
C13—H13B⋯O1ii 0.96 2.48 3.395 (3) 160
C14—H14B⋯O6iii 0.96 2.52 3.221 (3) 130
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+2; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nisoldipine is a calcium channel blocker with vasodilator properties (Marciniec et al. 2002). It is used in several commercial preparations for treatment of hypertension (Kazda et al. 1980). It has been the subject of many analytical chemical investigations. Synthetic conditions result in side-reactions and formation of 1,4-dihydropyridines. This compound is a degradation product of nisoldipine.

The molecular structure is shown in Fig 1. The dihedral angle between the planes of phenyl and the pyridyl rings is 75.5 (4)°. There are a number of C—H···O interactions between symmetry-related molecules.

Related literature top

For the preparation of the title compound see: Agbaba et al. (2004); Waldo & Correa (2001); Valentina et al. (2000). A derivative of the title compound, nisoldipine, has been evaluated as a calcium channel blocker with vasodilator properties, see: Ferrari et al. (2005); Marciniec et al. (2002); Kazda et al. (1980).

Experimental top

A solution of nisoldipine (10 mmol) in 50 mL anhydrous ethanol was exposed to sunlight for 10 h at ambient temperature. 50 mL of water was added to the mixture and it was then filtered. The crude product was purified by flash chromatography (40/60 ethyl acetate/ether).

Refinement top

H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.92—0.96 Å with with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(CMe)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
3-Isobutyl 5-methyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate top
Crystal data top
C20H22N2O6F(000) = 816
Mr = 386.40Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3360 reflections
a = 8.4222 (9) Åθ = 2.5–25.3°
b = 16.5850 (16) ŵ = 0.10 mm1
c = 14.5011 (15) ÅT = 296 K
β = 102.748 (2)°Block, colorless
V = 1975.6 (4) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3683 independent reflections
Radiation source: fine-focus sealed tube2718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.989, Tmax = 0.992k = 2016
10199 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.090P)2 + 0.3869P]
where P = (Fo2 + 2Fc2)/3
3683 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H22N2O6V = 1975.6 (4) Å3
Mr = 386.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4222 (9) ŵ = 0.10 mm1
b = 16.5850 (16) ÅT = 296 K
c = 14.5011 (15) Å0.12 × 0.10 × 0.08 mm
β = 102.748 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2718 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.992Rint = 0.020
10199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
3683 reflectionsΔρmin = 0.21 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6743 (2)0.17497 (11)0.80315 (14)0.0478 (5)
C20.5729 (3)0.17694 (15)0.71437 (18)0.0685 (7)
H20.47640.14760.70200.082*
C30.6151 (4)0.22258 (17)0.64421 (17)0.0765 (8)
H30.54620.22500.58460.092*
C40.7583 (3)0.26433 (15)0.66227 (16)0.0700 (7)
H40.78770.29440.61450.084*
C50.8585 (3)0.26212 (12)0.75035 (15)0.0546 (5)
H50.95590.29070.76140.066*
C60.8188 (2)0.21826 (11)0.82405 (13)0.0412 (4)
C70.9348 (2)0.22295 (10)0.91819 (12)0.0376 (4)
C81.0480 (2)0.16259 (10)0.95138 (13)0.0403 (4)
C91.1657 (2)0.17571 (11)1.03476 (14)0.0443 (5)
C101.0622 (2)0.30249 (11)1.05295 (14)0.0457 (5)
C110.9444 (2)0.29486 (10)0.96861 (13)0.0396 (4)
C121.0756 (3)0.37681 (14)1.11321 (18)0.0692 (7)
H12A1.14410.36591.17410.104*
H12B0.96930.39231.12060.104*
H12C1.12190.41981.08340.104*
C131.2955 (3)0.11554 (13)1.07470 (17)0.0617 (6)
H13A1.37340.11321.03540.093*
H13B1.24710.06341.07680.093*
H13C1.34920.13151.13750.093*
C141.1842 (3)0.01320 (15)0.8348 (2)0.0854 (9)
H14A1.15400.05370.87500.128*
H14B1.29280.02340.82720.128*
H14C1.11020.01470.77410.128*
C150.5685 (2)0.41210 (14)0.8841 (2)0.0660 (6)
H15A0.56110.41270.81640.079*
H15B0.60660.46460.90920.079*
C160.4058 (3)0.39528 (15)0.90375 (19)0.0657 (6)
H160.41790.39630.97250.079*
C170.2888 (3)0.46254 (19)0.8627 (2)0.0936 (9)
H17A0.33280.51340.88780.140*
H17B0.18590.45370.87920.140*
H17C0.27380.46300.79510.140*
C180.3416 (3)0.31309 (17)0.8696 (2)0.0772 (7)
H18A0.32920.31000.80230.116*
H18B0.23800.30460.88530.116*
H18C0.41670.27240.89940.116*
C191.0395 (2)0.08501 (11)0.89873 (15)0.0471 (5)
C200.8372 (2)0.36417 (11)0.93117 (14)0.0445 (4)
N10.62323 (19)0.12682 (11)0.87582 (15)0.0588 (5)
N21.16919 (19)0.24420 (10)1.08444 (12)0.0492 (4)
O10.9204 (2)0.04564 (10)0.87632 (16)0.0907 (7)
O21.17751 (19)0.06580 (9)0.87727 (13)0.0710 (5)
O30.68230 (15)0.34992 (8)0.92811 (11)0.0558 (4)
O40.88648 (19)0.42597 (9)0.90518 (15)0.0768 (5)
O50.6685 (2)0.14682 (11)0.95800 (12)0.0725 (5)
O60.5362 (2)0.06843 (12)0.85059 (16)0.0947 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (10)0.0479 (11)0.0536 (11)0.0019 (8)0.0038 (8)0.0091 (9)
C20.0533 (13)0.0721 (15)0.0683 (16)0.0055 (11)0.0123 (11)0.0226 (13)
C30.092 (2)0.0798 (17)0.0451 (13)0.0281 (15)0.0131 (12)0.0107 (12)
C40.0932 (19)0.0689 (15)0.0452 (13)0.0206 (14)0.0095 (12)0.0037 (11)
C50.0598 (13)0.0534 (12)0.0503 (12)0.0046 (9)0.0114 (10)0.0032 (9)
C60.0401 (9)0.0398 (9)0.0419 (10)0.0058 (7)0.0055 (8)0.0032 (8)
C70.0324 (9)0.0385 (9)0.0416 (10)0.0045 (7)0.0076 (7)0.0009 (7)
C80.0373 (9)0.0349 (9)0.0481 (10)0.0035 (7)0.0079 (8)0.0025 (8)
C90.0385 (9)0.0405 (10)0.0516 (11)0.0036 (7)0.0048 (8)0.0042 (8)
C100.0406 (10)0.0438 (10)0.0505 (11)0.0046 (8)0.0050 (8)0.0062 (9)
C110.0322 (9)0.0383 (9)0.0489 (10)0.0028 (7)0.0100 (8)0.0006 (8)
C120.0661 (14)0.0570 (14)0.0759 (16)0.0003 (11)0.0032 (12)0.0225 (12)
C130.0572 (13)0.0538 (13)0.0644 (14)0.0057 (10)0.0074 (10)0.0045 (10)
C140.0797 (17)0.0593 (15)0.121 (2)0.0004 (13)0.0313 (16)0.0361 (15)
C150.0462 (12)0.0578 (13)0.0916 (17)0.0121 (10)0.0101 (11)0.0198 (12)
C160.0487 (12)0.0741 (15)0.0734 (15)0.0114 (11)0.0116 (11)0.0161 (12)
C170.0564 (15)0.098 (2)0.124 (3)0.0277 (14)0.0160 (15)0.0310 (19)
C180.0513 (13)0.0931 (19)0.0862 (18)0.0068 (13)0.0130 (12)0.0095 (15)
C190.0409 (10)0.0378 (10)0.0592 (12)0.0002 (8)0.0035 (9)0.0003 (9)
C200.0402 (10)0.0391 (10)0.0533 (11)0.0018 (8)0.0084 (8)0.0020 (8)
N10.0403 (9)0.0596 (11)0.0751 (13)0.0099 (8)0.0099 (9)0.0080 (10)
N20.0433 (9)0.0479 (9)0.0512 (10)0.0021 (7)0.0010 (7)0.0025 (7)
O10.0535 (9)0.0594 (10)0.1577 (19)0.0133 (8)0.0201 (11)0.0422 (11)
O20.0602 (9)0.0568 (9)0.1024 (13)0.0086 (7)0.0317 (9)0.0292 (8)
O30.0370 (7)0.0486 (8)0.0804 (10)0.0036 (6)0.0101 (7)0.0143 (7)
O40.0538 (9)0.0472 (9)0.1299 (16)0.0000 (7)0.0214 (9)0.0233 (9)
O50.0717 (11)0.0852 (12)0.0627 (11)0.0205 (9)0.0197 (8)0.0001 (9)
O60.0713 (11)0.0836 (13)0.1256 (17)0.0391 (10)0.0141 (11)0.0118 (11)
Geometric parameters (Å, º) top
C1—C21.379 (3)C13—H13B0.9600
C1—C61.388 (3)C13—H13C0.9600
C1—N11.460 (3)C14—O21.454 (3)
C2—C31.376 (4)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.365 (4)C14—H14C0.9600
C3—H30.9300C15—O31.456 (2)
C4—C51.367 (3)C15—C161.486 (3)
C4—H40.9300C15—H15A0.9700
C5—C61.393 (3)C15—H15B0.9700
C5—H50.9300C16—C181.509 (4)
C6—C71.495 (2)C16—C171.521 (3)
C7—C111.392 (2)C16—H160.9800
C7—C81.393 (2)C17—H17A0.9600
C8—C91.401 (3)C17—H17B0.9600
C8—C191.490 (3)C17—H17C0.9600
C9—N21.342 (2)C18—H18A0.9600
C9—C131.499 (3)C18—H18B0.9600
C10—N21.332 (2)C18—H18C0.9600
C10—C111.400 (3)C19—O11.181 (2)
C10—C121.501 (3)C19—O21.307 (2)
C11—C201.488 (3)C20—O41.197 (2)
C12—H12A0.9600C20—O31.317 (2)
C12—H12B0.9600N1—O61.221 (2)
C12—H12C0.9600N1—O51.214 (2)
C13—H13A0.9600
C2—C1—C6121.6 (2)H13B—C13—H13C109.5
C2—C1—N1117.79 (19)O2—C14—H14A109.5
C6—C1—N1120.59 (17)O2—C14—H14B109.5
C3—C2—C1119.7 (2)H14A—C14—H14B109.5
C3—C2—H2120.2O2—C14—H14C109.5
C1—C2—H2120.2H14A—C14—H14C109.5
C4—C3—C2119.9 (2)H14B—C14—H14C109.5
C4—C3—H3120.0O3—C15—C16109.20 (18)
C2—C3—H3120.0O3—C15—H15A109.8
C3—C4—C5120.2 (2)C16—C15—H15A109.8
C3—C4—H4119.9O3—C15—H15B109.8
C5—C4—H4119.9C16—C15—H15B109.8
C4—C5—C6121.8 (2)H15A—C15—H15B108.3
C4—C5—H5119.1C15—C16—C18112.7 (2)
C6—C5—H5119.1C15—C16—C17109.4 (2)
C1—C6—C5116.75 (18)C18—C16—C17112.3 (2)
C1—C6—C7126.24 (17)C15—C16—H16107.4
C5—C6—C7117.00 (17)C18—C16—H16107.4
C11—C7—C8118.55 (16)C17—C16—H16107.4
C11—C7—C6118.36 (15)C16—C17—H17A109.5
C8—C7—C6122.52 (15)C16—C17—H17B109.5
C7—C8—C9119.11 (16)H17A—C17—H17B109.5
C7—C8—C19119.47 (16)C16—C17—H17C109.5
C9—C8—C19121.41 (16)H17A—C17—H17C109.5
N2—C9—C8121.50 (16)H17B—C17—H17C109.5
N2—C9—C13115.35 (17)C16—C18—H18A109.5
C8—C9—C13123.15 (17)C16—C18—H18B109.5
N2—C10—C11121.95 (17)H18A—C18—H18B109.5
N2—C10—C12116.00 (17)C16—C18—H18C109.5
C11—C10—C12122.05 (17)H18A—C18—H18C109.5
C7—C11—C10118.98 (16)H18B—C18—H18C109.5
C7—C11—C20120.65 (16)O1—C19—O2123.08 (19)
C10—C11—C20120.30 (16)O1—C19—C8124.05 (19)
C10—C12—H12A109.5O2—C19—C8112.84 (16)
C10—C12—H12B109.5O4—C20—O3123.53 (18)
H12A—C12—H12B109.5O4—C20—C11123.49 (17)
C10—C12—H12C109.5O3—C20—C11112.97 (15)
H12A—C12—H12C109.5O6—N1—O5123.3 (2)
H12B—C12—H12C109.5O6—N1—C1118.1 (2)
C9—C13—H13A109.5O5—N1—C1118.68 (17)
C9—C13—H13B109.5C10—N2—C9119.82 (16)
H13A—C13—H13B109.5C19—O2—C14116.10 (18)
C9—C13—H13C109.5C20—O3—C15116.05 (15)
H13A—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O4i0.962.573.303 (3)134
C13—H13B···O1ii0.962.483.395 (3)160
C14—H14B···O6iii0.962.523.221 (3)130
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H22N2O6
Mr386.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4222 (9), 16.5850 (16), 14.5011 (15)
β (°) 102.748 (2)
V3)1975.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.989, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10199, 3683, 2718
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.154, 1.01
No. of reflections3683
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O4i0.962.573.303 (3)134
C13—H13B···O1ii0.962.483.395 (3)160
C14—H14B···O6iii0.962.523.221 (3)130
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z.
 

Acknowledgements

We thank the Natural Science Foundation of China (Nos. 30901883, 20972189) for financial support.

References

First citationAgbaba, D., Vucicevic, K. & Marinkovic, V. (2004). Chromatographia, 60, 223–227.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M., Ghezzi, M., Alberelli, C. & &Ambrosini, L. (2005). US Patent 2005/0240022 A1.  Google Scholar
First citationKazda, S., Garhoff, B., Meyer, H., Schlossmann, K., Stoepel, K., Towart, R., Vater, W. & Wehinger, E. (1980). Arzneim. Forsch. Drug Res. 30, 2144–2162.  CAS Google Scholar
First citationMarciniec, B., Jaroszkiewicz, E. & Ogrodowczyk, M. (2002). Int. J. Pharm. 233, 207–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValentina, M., Danica, A., Katarina, K. R., Jozef, C. & &Dobrila, Z. S. (2000). Farmaco, 55, 128–133.  Web of Science PubMed Google Scholar
First citationWaldo, H. & Correa, J. L. S. (2001). Green Chem. 3, 296–301.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds