organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­­oxy-1-(3-nitro­phen­yl)ethanaminium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 25 November 2009; accepted 28 November 2009; online 12 December 2009)

In the cation of the title compound, C9H11N2O4+·ClO4, the conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal packing, centrosymmetrically related cations inter­act through inter­molecular O—H⋯O hydrogen bonds involving the carb­oxy groups, forming dimers. The dimers and the perchlorate anions are further linked into layers parallel to the ab plane by C—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For the synthesis of β-amino acids, see: Cohen et al. (2002[ Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977-1981.]); Qu et al. (2004[ Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54-60.]); Zhao (2007[ Zhao, H. (2007). Acta Cryst. E63, o3400.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[ Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[ Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N2O4+·ClO4

  • Mr = 310.65

  • Triclinic, [P \overline 1]

  • a = 7.5932 (8) Å

  • b = 7.8843 (1) Å

  • c = 11.8615 (6) Å

  • α = 94.745 (3)°

  • β = 99.780 (7)°

  • γ = 116.323 (4)°

  • V = 617.11 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[ Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.884, Tmax = 0.950

  • 6395 measured reflections

  • 2799 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.237

  • S = 0.99

  • 2799 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.89 2.36 2.953 (4) 124
N2—H2A⋯O8 0.89 2.15 2.884 (5) 139
N2—H2B⋯O5i 0.89 2.31 3.113 (5) 150
N2—H2B⋯O6i 0.89 2.34 3.120 (5) 147
N2—H2C⋯O2ii 0.89 2.15 2.960 (5) 152
O3—H3⋯O4iii 0.82 1.89 2.690 (4) 167
C2—H2⋯O8iv 0.93 2.58 3.420 (5) 150
C6—H6⋯O2ii 0.93 2.54 3.445 (5) 163
C8—H8A⋯O6iv 0.97 2.50 3.403 (5) 154
C8—H8B⋯O7v 0.97 2.57 3.134 (6) 117
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku 2005[ Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[ Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there have been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002). In addition, β-amino acids are attractive ligands for use in the generation of polar coordination polymers, especially when one considers that the ferroelectric compounds (Qu et al., 2004).

The asymmetric unit of the title compound (Fig. 1) contains one 1-(3-nitrophenyl)-2-carboxyethanaminium and one perchlorate anion. The conformation of the cation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the crystal packing, centrosymmetrically related cations at (x, y, z) and (-x, 1-y, 1-z) are linked into a dimer by intermolecular O—H···O hydrogen bonds involving the carboxy groups forming an eigth-membered ring of graph set motif R2 2(8) (Etter et al., 1990; Bernstein et al., 1995). The dimers and the perchlorate anions are further connected into layers parallel to the ab plane (Fig. 2) by C—H···O and N—H···O hydrogen bonding interactions.

Related literature top

For the synthesis of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004); Zhao et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Under nitrogen protection, 3-nitrobenzaldehyde (4.53 g, 30 mmol), malonic acid (5.0 g, 48 mmol) and ammonium acetate (6.0 g, 78 mmol) were added in a flask and refluxed for 12 h yielding a white precipitate. After being cooled to room temperature, the solution was filtered, and the 3-amino-3-(3-nitrophenyl)propanoic acid obtained was dissolved in ethanol and perchloric acid. After slow evaporation of the solution over a period of 3 d, colourless prismatic crystals of the title compound suitable for X-ray diffraction analysis were isolated.

Refinement top

All H atoms were calculated geometrically and were allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(N, O).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the title compound, with the displacement ellipsoids were drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
2-Carboxy-1-(3-nitrophenyl)ethanaminium perchlorate top
Crystal data top
C9H11N2O4+·ClO4Z = 2
Mr = 310.65F(000) = 320
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5932 (8) ÅCell parameters from 1641 reflections
b = 7.8843 (1) Åθ = 3.1–27.5°
c = 11.8615 (6) ŵ = 0.35 mm1
α = 94.745 (3)°T = 293 K
β = 99.780 (7)°Prism, colourless
γ = 116.323 (4)°0.45 × 0.30 × 0.15 mm
V = 617.11 (7) Å3
Data collection top
Rigaku SCXmini
diffractometer
2799 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD Profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.884, Tmax = 0.950l = 1515
6395 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.237 w = 1/[σ2(Fo2) + (0.1426P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2799 reflectionsΔρmax = 0.58 e Å3
183 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (1)
Crystal data top
C9H11N2O4+·ClO4γ = 116.323 (4)°
Mr = 310.65V = 617.11 (7) Å3
Triclinic, P1Z = 2
a = 7.5932 (8) ÅMo Kα radiation
b = 7.8843 (1) ŵ = 0.35 mm1
c = 11.8615 (6) ÅT = 293 K
α = 94.745 (3)°0.45 × 0.30 × 0.15 mm
β = 99.780 (7)°
Data collection top
Rigaku SCXmini
diffractometer
2799 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1732 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.950Rint = 0.049
6395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.237H-atom parameters constrained
S = 0.99Δρmax = 0.58 e Å3
2799 reflectionsΔρmin = 0.53 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34320 (15)0.01534 (15)0.65117 (8)0.0463 (4)
O50.3304 (6)0.1381 (5)0.5737 (3)0.0772 (11)
O60.5400 (5)0.1058 (5)0.7279 (3)0.0763 (11)
O70.1979 (6)0.0555 (6)0.7205 (3)0.0867 (13)
O80.3233 (9)0.1574 (7)0.5920 (3)0.0996 (16)
O40.1696 (4)0.4174 (4)0.4775 (2)0.0423 (7)
O30.0141 (5)0.5359 (5)0.3563 (2)0.0523 (8)
H30.02340.55920.41380.079*
C30.7013 (5)0.4845 (5)0.1024 (3)0.0343 (8)
C20.6238 (5)0.4860 (5)0.1994 (3)0.0346 (8)
H20.68880.59080.26020.042*
C10.4454 (5)0.3264 (5)0.2039 (3)0.0315 (7)
N10.8866 (5)0.6592 (5)0.0985 (3)0.0467 (9)
N20.2618 (5)0.1458 (5)0.3442 (3)0.0444 (8)
H2A0.22650.15910.41100.067*
H2B0.34900.09840.35360.067*
H2C0.15250.06590.28960.067*
C90.1278 (5)0.4556 (5)0.3827 (3)0.0345 (8)
C70.3587 (5)0.3383 (5)0.3081 (3)0.0338 (8)
H70.46960.42780.37280.041*
C60.3520 (5)0.1742 (5)0.1112 (3)0.0366 (8)
H60.23220.06830.11360.044*
O10.9505 (5)0.6627 (5)0.0093 (3)0.0696 (10)
C50.4334 (6)0.1763 (6)0.0143 (3)0.0386 (8)
H50.36820.07300.04750.046*
O20.9618 (5)0.7907 (5)0.1799 (3)0.0722 (10)
C40.6139 (6)0.3347 (6)0.0106 (3)0.0394 (9)
H40.67280.33820.05240.047*
C80.2089 (6)0.4171 (6)0.2816 (3)0.0370 (8)
H8A0.27410.53610.25280.044*
H8B0.09600.32630.21980.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0496 (6)0.0469 (6)0.0457 (6)0.0250 (5)0.0138 (4)0.0040 (4)
O50.077 (3)0.055 (2)0.092 (3)0.0231 (19)0.034 (2)0.0077 (19)
O60.054 (2)0.071 (2)0.082 (2)0.0171 (19)0.0018 (18)0.013 (2)
O70.062 (2)0.103 (3)0.084 (3)0.023 (2)0.040 (2)0.002 (2)
O80.185 (5)0.119 (3)0.047 (2)0.119 (4)0.017 (2)0.022 (2)
O40.0490 (15)0.0624 (18)0.0341 (14)0.0396 (15)0.0155 (12)0.0111 (12)
O30.0618 (18)0.086 (2)0.0394 (14)0.0580 (18)0.0179 (14)0.0155 (15)
C30.0284 (17)0.041 (2)0.0417 (19)0.0200 (16)0.0139 (15)0.0149 (16)
C20.0292 (18)0.0376 (19)0.0381 (19)0.0168 (16)0.0071 (15)0.0057 (15)
C10.0296 (17)0.0360 (18)0.0319 (17)0.0174 (15)0.0082 (14)0.0056 (14)
N10.0353 (18)0.049 (2)0.065 (2)0.0217 (17)0.0210 (17)0.0245 (19)
N20.056 (2)0.052 (2)0.0401 (17)0.0335 (18)0.0215 (16)0.0162 (15)
C90.0336 (18)0.0391 (19)0.0350 (18)0.0198 (16)0.0111 (15)0.0045 (15)
C70.0297 (17)0.0371 (19)0.0349 (18)0.0149 (15)0.0101 (14)0.0070 (15)
C60.0341 (18)0.0330 (18)0.0413 (19)0.0137 (16)0.0119 (15)0.0046 (15)
O10.062 (2)0.080 (2)0.088 (2)0.0352 (19)0.053 (2)0.041 (2)
C50.042 (2)0.040 (2)0.0376 (19)0.0215 (18)0.0115 (16)0.0028 (16)
O20.055 (2)0.054 (2)0.074 (2)0.0025 (17)0.0133 (18)0.0074 (19)
C40.043 (2)0.056 (2)0.0359 (18)0.032 (2)0.0193 (16)0.0173 (17)
C80.043 (2)0.045 (2)0.0356 (18)0.0273 (18)0.0198 (16)0.0116 (16)
Geometric parameters (Å, º) top
Cl1—O51.414 (3)N1—O11.234 (4)
Cl1—O81.419 (4)N2—C71.501 (5)
Cl1—O71.429 (4)N2—H2A0.8900
Cl1—O61.433 (4)N2—H2B0.8900
O4—C91.214 (4)N2—H2C0.8900
O3—C91.292 (4)C9—C81.506 (4)
O3—H30.8200C7—C81.521 (5)
C3—C41.366 (5)C7—H70.9800
C3—C21.380 (5)C6—C51.392 (5)
C3—N11.481 (5)C6—H60.9300
C2—C11.395 (5)C5—C41.397 (5)
C2—H20.9300C5—H50.9300
C1—C61.384 (5)C4—H40.9300
C1—C71.511 (5)C8—H8A0.9700
N1—O21.207 (5)C8—H8B0.9700
O5—Cl1—O8111.9 (2)O4—C9—O3125.3 (3)
O5—Cl1—O7110.5 (2)O4—C9—C8122.8 (3)
O8—Cl1—O7111.6 (3)O3—C9—C8111.9 (3)
O5—Cl1—O6107.7 (2)N2—C7—C1111.0 (3)
O8—Cl1—O6107.2 (3)N2—C7—C8111.1 (3)
O7—Cl1—O6107.7 (2)C1—C7—C8110.1 (3)
C9—O3—H3109.5N2—C7—H7108.2
C4—C3—C2123.7 (3)C1—C7—H7108.2
C4—C3—N1119.4 (3)C8—C7—H7108.2
C2—C3—N1116.9 (3)C1—C6—C5121.4 (3)
C3—C2—C1118.3 (3)C1—C6—H6119.3
C3—C2—H2120.9C5—C6—H6119.3
C1—C2—H2120.9C6—C5—C4119.4 (3)
C6—C1—C2119.1 (3)C6—C5—H5120.3
C6—C1—C7124.0 (3)C4—C5—H5120.3
C2—C1—C7116.7 (3)C3—C4—C5117.9 (3)
O2—N1—O1124.1 (4)C3—C4—H4121.0
O2—N1—C3118.7 (3)C5—C4—H4121.0
O1—N1—C3117.1 (4)C9—C8—C7115.3 (3)
C7—N2—H2A109.5C9—C8—H8A108.4
C7—N2—H2B109.5C7—C8—H8A108.4
H2A—N2—H2B109.5C9—C8—H8B108.4
C7—N2—H2C109.5C7—C8—H8B108.4
H2A—N2—H2C109.5H8A—C8—H8B107.5
H2B—N2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.892.362.953 (4)124
N2—H2A···O80.892.152.884 (5)139
N2—H2B···O5i0.892.313.113 (5)150
N2—H2B···O6i0.892.343.120 (5)147
N2—H2C···O2ii0.892.152.960 (5)152
O3—H3···O4iii0.821.892.690 (4)167
C2—H2···O8iv0.932.583.420 (5)150
C6—H6···O2ii0.932.543.445 (5)163
C8—H8A···O6iv0.972.503.403 (5)154
C8—H8B···O7v0.972.573.134 (6)117
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N2O4+·ClO4
Mr310.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5932 (8), 7.8843 (1), 11.8615 (6)
α, β, γ (°)94.745 (3), 99.780 (7), 116.323 (4)
V3)617.11 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.884, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
6395, 2799, 1732
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.237, 0.99
No. of reflections2799
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.53

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.892.362.953 (4)123.7
N2—H2A···O80.892.152.884 (5)139.1
N2—H2B···O5i0.892.313.113 (5)150.1
N2—H2B···O6i0.892.343.120 (5)147.0
N2—H2C···O2ii0.892.152.960 (5)151.8
O3—H3···O4iii0.821.892.690 (4)166.7
C2—H2···O8iv0.932.583.420 (5)150.2
C6—H6···O2ii0.932.543.445 (5)163.3
C8—H8A···O6iv0.972.503.403 (5)154.2
C8—H8B···O7v0.972.573.134 (6)117.2
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

References

First citation Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citation Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.  Web of Science CrossRef CAS Google Scholar
First citation Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citation Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citation Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54–60.  Google Scholar
First citation Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Zhao, H. (2007). Acta Cryst. E63, o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds