supplementary materials


Acta Cryst. (2010). E66, o117    [ doi:10.1107/S1600536809051319 ]

2-Carboxy-1-(3-nitrophenyl)ethanaminium perchlorate

W.-X. Liang, Y. Li, G. Wang and Z.-R. Qu

Abstract top

In the cation of the title compound, C9H11N2O4+·ClO4-, the conformation is stabilized by an intramolecular N-H...O hydrogen bond. In the crystal packing, centrosymmetrically related cations interact through intermolecular O-H...O hydrogen bonds involving the carboxy groups, forming dimers. The dimers and the perchlorate anions are further linked into layers parallel to the ab plane by C-H...O and N-H...O hydrogen-bonding interactions.

Comment top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there have been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002). In addition, β-amino acids are attractive ligands for use in the generation of polar coordination polymers, especially when one considers that the ferroelectric compounds (Qu et al., 2004).

The asymmetric unit of the title compound (Fig. 1) contains one 1-(3-nitrophenyl)-2-carboxyethanaminium and one perchlorate anion. The conformation of the cation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the crystal packing, centrosymmetrically related cations at (x, y, z) and (-x, 1-y, 1-z) are linked into a dimer by intermolecular O—H···O hydrogen bonds involving the carboxy groups forming an eigth-membered ring of graph set motif R2 2(8) (Etter et al., 1990; Bernstein et al., 1995). The dimers and the perchlorate anions are further connected into layers parallel to the ab plane (Fig. 2) by C—H···O and N—H···O hydrogen bonding interactions.

Related literature top

For the synthesis of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004); Zhao et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Under nitrogen protection, 3-nitrobenzaldehyde (4.53 g, 30 mmol), malonic acid (5.0 g, 48 mmol) and ammonium acetate (6.0 g, 78 mmol) were added in a flask and refluxed for 12 h yielding a white precipitate. After being cooled to room temperature, the solution was filtered, and the 3-amino-3-(3-nitrophenyl)propanoic acid obtained was dissolved in ethanol and perchloric acid. After slow evaporation of the solution over a period of 3 d, colourless prismatic crystals of the title compound suitable for X-ray diffraction analysis were isolated.

Refinement top

All H atoms were calculated geometrically and were allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(N, O).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the title compound, with the displacement ellipsoids were drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
2-Carboxy-1-(3-nitrophenyl)ethanaminium perchlorate top
Crystal data top
C9H11N2O4+·ClO4Z = 2
Mr = 310.65F(000) = 320
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5932 (8) ÅCell parameters from 1641 reflections
b = 7.8843 (1) Åθ = 3.1–27.5°
c = 11.8615 (6) ŵ = 0.35 mm1
α = 94.745 (3)°T = 293 K
β = 99.780 (7)°Prism, colourless
γ = 116.323 (4)°0.45 × 0.30 × 0.15 mm
V = 617.11 (7) Å3
Data collection top
Rigaku SCXmini
diffractometer
2799 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
graphiteRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD Profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.884, Tmax = 0.950l = 1515
6395 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.237 w = 1/[σ2(Fo2) + (0.1426P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2799 reflectionsΔρmax = 0.58 e Å3
183 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (1)
Crystal data top
C9H11N2O4+·ClO4γ = 116.323 (4)°
Mr = 310.65V = 617.11 (7) Å3
Triclinic, P1Z = 2
a = 7.5932 (8) ÅMo Kα radiation
b = 7.8843 (1) ŵ = 0.35 mm1
c = 11.8615 (6) ÅT = 293 K
α = 94.745 (3)°0.45 × 0.30 × 0.15 mm
β = 99.780 (7)°
Data collection top
Rigaku SCXmini
diffractometer
2799 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1732 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.950Rint = 0.049
6395 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.237Δρmax = 0.58 e Å3
S = 0.99Δρmin = 0.53 e Å3
2799 reflectionsAbsolute structure: ?
183 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34320 (15)0.01534 (15)0.65117 (8)0.0463 (4)
O50.3304 (6)0.1381 (5)0.5737 (3)0.0772 (11)
O60.5400 (5)0.1058 (5)0.7279 (3)0.0763 (11)
O70.1979 (6)0.0555 (6)0.7205 (3)0.0867 (13)
O80.3233 (9)0.1574 (7)0.5920 (3)0.0996 (16)
O40.1696 (4)0.4174 (4)0.4775 (2)0.0423 (7)
O30.0141 (5)0.5359 (5)0.3563 (2)0.0523 (8)
H30.02340.55920.41380.079*
C30.7013 (5)0.4845 (5)0.1024 (3)0.0343 (8)
C20.6238 (5)0.4860 (5)0.1994 (3)0.0346 (8)
H20.68880.59080.26020.042*
C10.4454 (5)0.3264 (5)0.2039 (3)0.0315 (7)
N10.8866 (5)0.6592 (5)0.0985 (3)0.0467 (9)
N20.2618 (5)0.1458 (5)0.3442 (3)0.0444 (8)
H2A0.22650.15910.41100.067*
H2B0.34900.09840.35360.067*
H2C0.15250.06590.28960.067*
C90.1278 (5)0.4556 (5)0.3827 (3)0.0345 (8)
C70.3587 (5)0.3383 (5)0.3081 (3)0.0338 (8)
H70.46960.42780.37280.041*
C60.3520 (5)0.1742 (5)0.1112 (3)0.0366 (8)
H60.23220.06830.11360.044*
O10.9505 (5)0.6627 (5)0.0093 (3)0.0696 (10)
C50.4334 (6)0.1763 (6)0.0143 (3)0.0386 (8)
H50.36820.07300.04750.046*
O20.9618 (5)0.7907 (5)0.1799 (3)0.0722 (10)
C40.6139 (6)0.3347 (6)0.0106 (3)0.0394 (9)
H40.67280.33820.05240.047*
C80.2089 (6)0.4171 (6)0.2816 (3)0.0370 (8)
H8A0.27410.53610.25280.044*
H8B0.09600.32630.21980.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0496 (6)0.0469 (6)0.0457 (6)0.0250 (5)0.0138 (4)0.0040 (4)
O50.077 (3)0.055 (2)0.092 (3)0.0231 (19)0.034 (2)0.0077 (19)
O60.054 (2)0.071 (2)0.082 (2)0.0171 (19)0.0018 (18)0.013 (2)
O70.062 (2)0.103 (3)0.084 (3)0.023 (2)0.040 (2)0.002 (2)
O80.185 (5)0.119 (3)0.047 (2)0.119 (4)0.017 (2)0.022 (2)
O40.0490 (15)0.0624 (18)0.0341 (14)0.0396 (15)0.0155 (12)0.0111 (12)
O30.0618 (18)0.086 (2)0.0394 (14)0.0580 (18)0.0179 (14)0.0155 (15)
C30.0284 (17)0.041 (2)0.0417 (19)0.0200 (16)0.0139 (15)0.0149 (16)
C20.0292 (18)0.0376 (19)0.0381 (19)0.0168 (16)0.0071 (15)0.0057 (15)
C10.0296 (17)0.0360 (18)0.0319 (17)0.0174 (15)0.0082 (14)0.0056 (14)
N10.0353 (18)0.049 (2)0.065 (2)0.0217 (17)0.0210 (17)0.0245 (19)
N20.056 (2)0.052 (2)0.0401 (17)0.0335 (18)0.0215 (16)0.0162 (15)
C90.0336 (18)0.0391 (19)0.0350 (18)0.0198 (16)0.0111 (15)0.0045 (15)
C70.0297 (17)0.0371 (19)0.0349 (18)0.0149 (15)0.0101 (14)0.0070 (15)
C60.0341 (18)0.0330 (18)0.0413 (19)0.0137 (16)0.0119 (15)0.0046 (15)
O10.062 (2)0.080 (2)0.088 (2)0.0352 (19)0.053 (2)0.041 (2)
C50.042 (2)0.040 (2)0.0376 (19)0.0215 (18)0.0115 (16)0.0028 (16)
O20.055 (2)0.054 (2)0.074 (2)0.0025 (17)0.0133 (18)0.0074 (19)
C40.043 (2)0.056 (2)0.0359 (18)0.032 (2)0.0193 (16)0.0173 (17)
C80.043 (2)0.045 (2)0.0356 (18)0.0273 (18)0.0198 (16)0.0116 (16)
Geometric parameters (Å, °) top
Cl1—O51.414 (3)N1—O11.234 (4)
Cl1—O81.419 (4)N2—C71.501 (5)
Cl1—O71.429 (4)N2—H2A0.8900
Cl1—O61.433 (4)N2—H2B0.8900
O4—C91.214 (4)N2—H2C0.8900
O3—C91.292 (4)C9—C81.506 (4)
O3—H30.8200C7—C81.521 (5)
C3—C41.366 (5)C7—H70.9800
C3—C21.380 (5)C6—C51.392 (5)
C3—N11.481 (5)C6—H60.9300
C2—C11.395 (5)C5—C41.397 (5)
C2—H20.9300C5—H50.9300
C1—C61.384 (5)C4—H40.9300
C1—C71.511 (5)C8—H8A0.9700
N1—O21.207 (5)C8—H8B0.9700
O5—Cl1—O8111.9 (2)O4—C9—O3125.3 (3)
O5—Cl1—O7110.5 (2)O4—C9—C8122.8 (3)
O8—Cl1—O7111.6 (3)O3—C9—C8111.9 (3)
O5—Cl1—O6107.7 (2)N2—C7—C1111.0 (3)
O8—Cl1—O6107.2 (3)N2—C7—C8111.1 (3)
O7—Cl1—O6107.7 (2)C1—C7—C8110.1 (3)
C9—O3—H3109.5N2—C7—H7108.2
C4—C3—C2123.7 (3)C1—C7—H7108.2
C4—C3—N1119.4 (3)C8—C7—H7108.2
C2—C3—N1116.9 (3)C1—C6—C5121.4 (3)
C3—C2—C1118.3 (3)C1—C6—H6119.3
C3—C2—H2120.9C5—C6—H6119.3
C1—C2—H2120.9C6—C5—C4119.4 (3)
C6—C1—C2119.1 (3)C6—C5—H5120.3
C6—C1—C7124.0 (3)C4—C5—H5120.3
C2—C1—C7116.7 (3)C3—C4—C5117.9 (3)
O2—N1—O1124.1 (4)C3—C4—H4121.0
O2—N1—C3118.7 (3)C5—C4—H4121.0
O1—N1—C3117.1 (4)C9—C8—C7115.3 (3)
C7—N2—H2A109.5C9—C8—H8A108.4
C7—N2—H2B109.5C7—C8—H8A108.4
H2A—N2—H2B109.5C9—C8—H8B108.4
C7—N2—H2C109.5C7—C8—H8B108.4
H2A—N2—H2C109.5H8A—C8—H8B107.5
H2B—N2—H2C109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.892.362.953 (4)124
N2—H2A···O80.892.152.884 (5)139
N2—H2B···O5i0.892.313.113 (5)150
N2—H2B···O6i0.892.343.120 (5)147
N2—H2C···O2ii0.892.152.960 (5)152
O3—H3···O4iii0.821.892.690 (4)167
C2—H2···O8iv0.932.583.420 (5)150
C6—H6···O2ii0.932.543.445 (5)163
C8—H8A···O6iv0.972.503.403 (5)154
C8—H8B···O7v0.972.573.134 (6)117
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.892.362.953 (4)124
N2—H2A···O80.892.152.884 (5)139
N2—H2B···O5i0.892.313.113 (5)150
N2—H2B···O6i0.892.343.120 (5)147
N2—H2C···O2ii0.892.152.960 (5)152
O3—H3···O4iii0.821.892.690 (4)167
C2—H2···O8iv0.932.583.420 (5)150
C6—H6···O2ii0.932.543.445 (5)163
C8—H8A···O6iv0.972.503.403 (5)154
C8—H8B···O7v0.972.573.134 (6)117
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z+1.
Acknowledgements top

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54–60.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhao, H. (2007). Acta Cryst. E63, o3400.