organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,7-Dimeth­­oxy-1-naphtho­yl)benzoic acid

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 20 February 2010; accepted 23 February 2010; online 27 February 2010)

In the title compound, C20H16O5, the dihedral angle between the naphthalene ring system and the benzene ring is 67.43 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 82.64 (6) and 41.79 (7)°, respectively, with the naphthalene ring system and the benzene ring. The dihedral angle between the carb­oxy O—C(=O)—C plane and the benzene ring is 36.38 (7)° and that between the bridging carbonyl C—C(=O)—C plane and the carb­oxy O—C(=O)—C plane is 51.88 (8)°. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding inter­actions. An intra­molecular C—H⋯O hydrogen bond occurs between a naphthalene H atom and the carbonyl O atom of the carb­oxy group.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Mitsui, Nakaema et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Mitsui, Noguchi et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]); Watanabe, Nakaema, Muto et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]); Watanabe, Nakaema, Nishijima et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]); Hijikata et al. (2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O5

  • Mr = 336.33

  • Monoclinic, P 21 /c

  • a = 10.8311 (2) Å

  • b = 10.61451 (19) Å

  • c = 15.4492 (3) Å

  • β = 111.728 (1)°

  • V = 1649.95 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.60 × 0.60 × 0.30 mm

Data collection
  • Rigaku R-AXIS- APID diffractometer

  • Absorption correction: multi-scan (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.711, Tmax = 0.785

  • 29727 measured reflections

  • 3023 independent reflections

  • 2710 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.095

  • S = 1.04

  • 3023 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1i 0.91 (2) 1.83 (2) 2.7320 (15) 173.4 (19)
C7—H7⋯O3ii 0.93 2.49 3.3215 (19) 150
C15—H15⋯O2iii 0.93 2.48 3.3152 (16) 149
C17—H17⋯O5iv 0.93 2.55 3.2821 (18) 136
C9—H9⋯O2 0.93 2.47 3.3850 (16) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Moreover, the X-ray crystal structural analysis of 1-(4-substituted benzoylated)naphthalenes, i.e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010), has also revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes.

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 1-monoaroylnaphthalene bearing carboxy group, is discussed in this report.

In the molecule of the title compound, shown in Fig. 1, the dihedral angle between the naphthalene ring (C1—C10) and the benzene ring (C12—C17) is 67.43 (5)°. The bridging carbonyl C1—C11(=O1)—C12 plane makes dihedral angles of 82.64 (6)° [C2—C1—C11—O1 torsion angle = -77.60 (16)°] and 41.79 (7)° [O1—C11—C12—C13 torsion angle = -37.07 (17)°], respectively, with the naphthalene ring system and the benzene ring. The dihedral angle between the carboxy O3—C18(=O2)—C13 plane and the benzene ring is 36.38 (7)° [C12—C13—C18—O2 torsion angle = -35.33 (19)°]. The dihedral angle between the bridging carbonyl C1—C11(=O1)—C12 plane and the carboxy O3—C18(=O2)—C13 plane is 51.88 (8)°. The torsion angle between one methoxy group and the naphthalene ring plane is relatively large [C29—O4—C2—C3 = -15.3 (2)°] and that between the other methoxy group and the naphthalene ring plane is rather small [C20—O5—C8—C7 = 3.8 (2)°]. The crystal structure is stabilized by intermolecular O3—H1···O1i [symmetry code: (i) -x+1, y-1/2,-z+1/2] and C—H···O hydrogen-bonding interactions with one intramolecular C9—H9···O2 hydrogen bonding (Table 1, Fig 1, 2).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For related structures, see: Mitsui, Nakaema et al. (2008); Mitsui, Noguchi et al. (2009); Watanabe, Nakaema, Muto et al. (2010); Watanabe, Nakaema, Nishijima et al. (2010); Hijikata et al. (2010).

Experimental top

The title compound was prepared by AlCl3-mediated regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with acetic anhydride. Single crystals suitable for X-ray diffraction were obtained by recrystallization from diethyl ether.

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 3.65 (3H, s), 3.78 (3H, s), 7.00 (1H, dd, J = 2.4, 9.0 Hz), 7.43-7.58 (4H, m), 7.66 (1H, d, J = 9.0 Hz), 7.84-7.88 (2H, m); 13C NMR (75.0 MHz, CDCl3) δ 55.3, 56.5, 102.7, 110.5, 117.4, 124.4, 129.4, 129.5, 129.9, 130.9, 131.4, 133.8, 142.1, 157.1, 159.6, 198.0; IR (KBr): 1698, 1627, 1512; HRMS (m/z): [M+H]+ Calcd for C20H17O5, 337.1076; Found, 337.1057.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and with Uĩso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-labeling scheme and 50% probability displacement ellipsoids. The intramolecular C—H···O interaction is shown as a dashed line.
[Figure 2] Fig. 2. A partial crystal packing diagram viewed down b. The intermolecular O—H···O and C—H···O interactions are shown as dashed lines.
2-(2,7-Dimethoxy-1-naphthoyl)benzoic acid top
Crystal data top
C20H16O5F(000) = 704
Mr = 336.33Dx = 1.354 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 26822 reflections
a = 10.8311 (2) Åθ = 3.1–68.2°
b = 10.61451 (19) ŵ = 0.81 mm1
c = 15.4492 (3) ÅT = 296 K
β = 111.728 (1)°Block, colorless
V = 1649.95 (5) Å30.60 × 0.60 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS- APID
diffractometer
3023 independent reflections
Radiation source: rotating anode2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.4°
ω scansh = 1313
Absorption correction: multi-scan
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.711, Tmax = 0.785l = 1818
29727 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2862P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3023 reflectionsΔρmax = 0.16 e Å3
233 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (3)
Crystal data top
C20H16O5V = 1649.95 (5) Å3
Mr = 336.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.8311 (2) ŵ = 0.81 mm1
b = 10.61451 (19) ÅT = 296 K
c = 15.4492 (3) Å0.60 × 0.60 × 0.30 mm
β = 111.728 (1)°
Data collection top
Rigaku R-AXIS- APID
diffractometer
3023 independent reflections
Absorption correction: multi-scan
(NUMABS; Higashi, 1999)
2710 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.785Rint = 0.028
29727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
3023 reflectionsΔρmin = 0.12 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40529 (9)0.47494 (10)0.24166 (7)0.0630 (3)
O20.36166 (9)0.19907 (10)0.24736 (6)0.0647 (3)
O30.54599 (9)0.15634 (11)0.36707 (7)0.0709 (3)
H10.5589 (19)0.100 (2)0.3272 (14)0.104 (6)*
O40.30544 (10)0.73160 (9)0.28563 (8)0.0726 (3)
O50.05580 (10)0.17144 (10)0.06622 (8)0.0725 (3)
C10.18889 (11)0.54939 (12)0.21895 (8)0.0487 (3)
C20.18877 (13)0.67861 (13)0.22803 (10)0.0580 (3)
C30.07232 (16)0.74830 (15)0.18184 (12)0.0706 (4)
H30.07160.83490.19060.085*
C40.03897 (15)0.68890 (15)0.12452 (11)0.0707 (4)
H40.11490.73620.09370.085*
C50.04262 (13)0.55796 (14)0.11051 (9)0.0590 (3)
C60.15566 (13)0.49476 (17)0.04818 (11)0.0711 (4)
H60.23110.54120.01480.085*
C70.15665 (14)0.36879 (17)0.03601 (11)0.0710 (4)
H70.23240.32920.00480.085*
C80.04226 (12)0.29720 (14)0.08549 (9)0.0576 (3)
C90.06985 (11)0.35343 (12)0.14630 (9)0.0505 (3)
H90.14420.30500.17870.061*
C100.07285 (11)0.48552 (12)0.16004 (8)0.0495 (3)
C110.31457 (11)0.47747 (11)0.27012 (8)0.0447 (3)
C120.33101 (10)0.41688 (11)0.36061 (7)0.0409 (3)
C130.40131 (10)0.30406 (11)0.39141 (7)0.0402 (3)
C140.43259 (12)0.26655 (13)0.48298 (8)0.0511 (3)
H140.47950.19210.50370.061*
C150.39508 (14)0.33816 (15)0.54409 (9)0.0605 (4)
H150.41710.31210.60550.073*
C160.32540 (13)0.44760 (14)0.51365 (9)0.0607 (4)
H160.30040.49600.55460.073*
C170.29207 (12)0.48650 (12)0.42223 (9)0.0523 (3)
H170.24310.56000.40190.063*
C180.43300 (11)0.21726 (11)0.32640 (7)0.0424 (3)
C190.32145 (18)0.86387 (15)0.28282 (13)0.0792 (5)
H19A0.41140.88610.32010.095*
H19B0.26200.90520.30690.095*
H19C0.30170.89000.21960.095*
C200.05113 (17)0.09279 (16)0.11674 (13)0.0798 (5)
H20A0.03000.00720.09660.096*
H20B0.06710.09900.18200.096*
H20C0.12930.11850.10610.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0532 (5)0.0731 (6)0.0744 (6)0.0134 (4)0.0372 (5)0.0261 (5)
O20.0577 (5)0.0842 (7)0.0423 (5)0.0184 (5)0.0068 (4)0.0127 (4)
O30.0549 (5)0.0910 (8)0.0539 (5)0.0303 (5)0.0051 (4)0.0173 (5)
O40.0693 (6)0.0470 (5)0.0925 (8)0.0002 (5)0.0194 (6)0.0074 (5)
O50.0589 (6)0.0676 (6)0.0757 (7)0.0136 (5)0.0073 (5)0.0077 (5)
C10.0445 (6)0.0497 (7)0.0544 (7)0.0074 (5)0.0212 (5)0.0128 (5)
C20.0566 (8)0.0524 (7)0.0659 (8)0.0054 (6)0.0238 (6)0.0107 (6)
C30.0750 (10)0.0527 (8)0.0863 (10)0.0201 (7)0.0326 (8)0.0185 (7)
C40.0591 (8)0.0723 (10)0.0796 (10)0.0264 (7)0.0245 (8)0.0246 (8)
C50.0472 (7)0.0696 (9)0.0616 (8)0.0142 (6)0.0216 (6)0.0198 (6)
C60.0434 (7)0.0907 (12)0.0713 (9)0.0153 (7)0.0121 (6)0.0229 (8)
C70.0430 (7)0.0918 (12)0.0670 (9)0.0025 (7)0.0073 (6)0.0146 (8)
C80.0459 (7)0.0673 (8)0.0574 (7)0.0049 (6)0.0165 (6)0.0115 (6)
C90.0398 (6)0.0567 (7)0.0531 (7)0.0037 (5)0.0151 (5)0.0141 (5)
C100.0411 (6)0.0580 (7)0.0518 (6)0.0067 (5)0.0200 (5)0.0138 (5)
C110.0402 (6)0.0435 (6)0.0520 (6)0.0009 (5)0.0190 (5)0.0036 (5)
C120.0340 (5)0.0447 (6)0.0449 (6)0.0026 (4)0.0154 (4)0.0013 (5)
C130.0345 (5)0.0464 (6)0.0388 (5)0.0007 (4)0.0125 (4)0.0013 (4)
C140.0502 (7)0.0599 (7)0.0410 (6)0.0052 (6)0.0143 (5)0.0036 (5)
C150.0610 (8)0.0820 (10)0.0397 (6)0.0000 (7)0.0200 (6)0.0030 (6)
C160.0622 (8)0.0724 (9)0.0560 (7)0.0029 (7)0.0319 (6)0.0168 (6)
C170.0493 (7)0.0511 (7)0.0623 (7)0.0009 (5)0.0274 (6)0.0056 (6)
C180.0383 (5)0.0476 (6)0.0398 (6)0.0030 (5)0.0128 (5)0.0003 (5)
C190.0928 (12)0.0515 (8)0.0992 (12)0.0041 (8)0.0423 (10)0.0056 (8)
C200.0753 (10)0.0634 (9)0.0870 (11)0.0022 (8)0.0142 (8)0.0008 (8)
Geometric parameters (Å, º) top
O1—C111.2163 (13)C8—C91.3670 (18)
O2—C181.1945 (13)C9—C101.4166 (18)
O3—C181.3195 (14)C9—H90.9300
O3—H10.91 (2)C11—C121.4885 (16)
O4—C21.3684 (17)C12—C171.3884 (16)
O4—C191.4173 (18)C12—C131.4042 (16)
O5—C81.3637 (18)C13—C141.3856 (16)
O5—C201.4065 (19)C13—C181.4935 (15)
C1—C21.3788 (19)C14—C151.3849 (18)
C1—C101.4215 (17)C14—H140.9300
C1—C111.5046 (15)C15—C161.370 (2)
C2—C31.4074 (19)C15—H150.9300
C3—C41.358 (2)C16—C171.3850 (19)
C3—H30.9300C16—H160.9300
C4—C51.405 (2)C17—H170.9300
C4—H40.9300C19—H19A0.9600
C5—C61.415 (2)C19—H19B0.9600
C5—C101.4256 (16)C19—H19C0.9600
C6—C71.350 (2)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C81.4126 (19)C20—H20C0.9600
C7—H70.9300
C18—O3—H1110.5 (12)C12—C11—C1118.89 (9)
C2—O4—C19118.76 (12)C17—C12—C13119.07 (10)
C8—O5—C20117.39 (11)C17—C12—C11116.93 (11)
C2—C1—C10120.37 (11)C13—C12—C11123.23 (10)
C2—C1—C11119.08 (11)C14—C13—C12119.21 (10)
C10—C1—C11120.53 (11)C14—C13—C18118.63 (10)
O4—C2—C1116.08 (12)C12—C13—C18121.94 (9)
O4—C2—C3123.52 (13)C15—C14—C13121.04 (12)
C1—C2—C3120.37 (14)C15—C14—H14119.5
C4—C3—C2119.94 (14)C13—C14—H14119.5
C4—C3—H3120.0C16—C15—C14119.65 (12)
C2—C3—H3120.0C16—C15—H15120.2
C3—C4—C5121.82 (13)C14—C15—H15120.2
C3—C4—H4119.1C15—C16—C17120.35 (12)
C5—C4—H4119.1C15—C16—H16119.8
C4—C5—C6122.79 (13)C17—C16—H16119.8
C4—C5—C10118.80 (13)C16—C17—C12120.65 (12)
C6—C5—C10118.40 (13)C16—C17—H17119.7
C7—C6—C5121.64 (13)C12—C17—H17119.7
C7—C6—H6119.2O2—C18—O3122.85 (11)
C5—C6—H6119.2O2—C18—C13124.36 (10)
C6—C7—C8119.83 (14)O3—C18—C13112.69 (9)
C6—C7—H7120.1O4—C19—H19A109.5
C8—C7—H7120.1O4—C19—H19B109.5
O5—C8—C9125.01 (12)H19A—C19—H19B109.5
O5—C8—C7113.99 (13)O4—C19—H19C109.5
C9—C8—C7121.00 (14)H19A—C19—H19C109.5
C8—C9—C10120.03 (11)H19B—C19—H19C109.5
C8—C9—H9120.0O5—C20—H20A109.5
C10—C9—H9120.0O5—C20—H20B109.5
C9—C10—C1122.26 (10)H20A—C20—H20B109.5
C9—C10—C5119.11 (12)O5—C20—H20C109.5
C1—C10—C5118.59 (12)H20A—C20—H20C109.5
O1—C11—C12119.88 (10)H20B—C20—H20C109.5
O1—C11—C1121.07 (10)
C19—O4—C2—C1166.64 (13)C6—C5—C10—C90.91 (18)
C19—O4—C2—C315.3 (2)C4—C5—C10—C12.41 (18)
C10—C1—C2—O4179.44 (11)C6—C5—C10—C1176.71 (12)
C11—C1—C2—O41.13 (18)C2—C1—C11—O177.60 (16)
C10—C1—C2—C32.4 (2)C10—C1—C11—O1100.70 (14)
C11—C1—C2—C3179.30 (12)C2—C1—C11—C1297.80 (14)
O4—C2—C3—C4178.89 (14)C10—C1—C11—C1283.90 (14)
C1—C2—C3—C43.1 (2)O1—C11—C12—C17132.79 (12)
C2—C3—C4—C51.0 (2)C1—C11—C12—C1742.67 (15)
C3—C4—C5—C6177.30 (14)O1—C11—C12—C1337.07 (17)
C3—C4—C5—C101.8 (2)C1—C11—C12—C13147.48 (11)
C4—C5—C6—C7179.97 (15)C17—C12—C13—C141.43 (16)
C10—C5—C6—C70.9 (2)C11—C12—C13—C14168.22 (11)
C5—C6—C7—C80.7 (2)C17—C12—C13—C18173.01 (10)
C20—O5—C8—C93.8 (2)C11—C12—C13—C1817.34 (16)
C20—O5—C8—C7176.41 (14)C12—C13—C14—C150.31 (18)
C6—C7—C8—O5179.36 (14)C18—C13—C14—C15174.32 (11)
C6—C7—C8—C90.4 (2)C13—C14—C15—C160.3 (2)
O5—C8—C9—C10179.34 (12)C14—C15—C16—C170.2 (2)
C7—C8—C9—C100.4 (2)C15—C16—C17—C121.4 (2)
C8—C9—C10—C1176.87 (11)C13—C12—C17—C161.96 (17)
C8—C9—C10—C50.67 (18)C11—C12—C17—C16168.33 (11)
C2—C1—C10—C9177.90 (12)C14—C13—C18—O2139.14 (13)
C11—C1—C10—C90.38 (17)C12—C13—C18—O235.33 (18)
C2—C1—C10—C50.35 (17)C14—C13—C18—O337.23 (15)
C11—C1—C10—C5177.93 (11)C12—C13—C18—O3148.30 (11)
C4—C5—C10—C9179.96 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1i0.91 (2)1.83 (2)2.7320 (15)173.4 (19)
C7—H7···O3ii0.932.493.3215 (19)150
C15—H15···O2iii0.932.483.3152 (16)149
C17—H17···O5iv0.932.553.2821 (18)136
C9—H9···O20.932.473.3850 (16)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16O5
Mr336.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.8311 (2), 10.61451 (19), 15.4492 (3)
β (°) 111.728 (1)
V3)1649.95 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.60 × 0.60 × 0.30
Data collection
DiffractometerRigaku R-AXIS- APID
diffractometer
Absorption correctionMulti-scan
(NUMABS; Higashi, 1999)
Tmin, Tmax0.711, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
29727, 3023, 2710
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.095, 1.04
No. of reflections3023
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1i0.91 (2)1.83 (2)2.7320 (15)173.4 (19)
C7—H7···O3ii0.932.493.3215 (19)150
C15—H15···O2iii0.932.483.3152 (16)149
C17—H17···O5iv0.932.553.2821 (18)136
C9—H9···O20.932.473.3850 (16)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.  Web of Science CSD CrossRef IUCr Journals
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds