organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o639-o640

4-Amino-3-ammonio­pyridinium dinitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 February 2010; accepted 10 February 2010; online 17 February 2010)

In the crystal structure of the title compound, C5H9N32+·2NO3, the cations and anions are connected by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by ππ inter­actions between pyridinium rings [centroid–centroid distance = 3.775 (4) Å].

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta. 11, 277-283.]). For related structures, see: Fun & Balasubramani (2009[Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531-o1532.]); Rubin-Preminger & Englert (2007[Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757-o758.]); Qin & Wang (2009[Qin, J.-H. & Wang, J.-G. (2009). Acta Cryst. E65, o131.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9N32+·2NO3

  • Mr = 235.17

  • Monoclinic, P 21 /c

  • a = 12.3008 (5) Å

  • b = 10.5086 (5) Å

  • c = 7.1411 (3) Å

  • β = 97.546 (1)°

  • V = 915.09 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.65 × 0.37 × 0.28 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.958

  • 18234 measured reflections

  • 4796 independent reflections

  • 4129 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.06

  • 4796 reflections

  • 181 parameters

  • All H-atom parameters refined

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.874 (13) 2.001 (13) 2.7750 (7) 147.0 (12)
N2—H1N2⋯O5 0.935 (14) 2.105 (15) 2.9070 (8) 143.1 (12)
N2—H1N2⋯O2ii 0.935 (14) 2.211 (14) 2.7767 (7) 118.1 (11)
N2—H2N2⋯O3iii 0.881 (14) 2.193 (14) 3.0006 (7) 152.3 (12)
N2—H2N2⋯O3iv 0.881 (14) 2.482 (14) 2.9231 (7) 111.6 (11)
N3—H1N3⋯O4 0.844 (16) 2.054 (16) 2.8653 (8) 161.0 (14)
N3—H2N3⋯O6v 0.827 (12) 2.130 (12) 2.9442 (7) 168.0 (12)
N2—H3N2⋯O5iv 0.871 (12) 1.963 (12) 2.8227 (8) 169.0 (12)
N2—H3N2⋯O6iv 0.871 (12) 2.494 (12) 3.1217 (7) 129.5 (10)
C2—H2⋯O3iii 0.910 (11) 2.439 (11) 3.0489 (8) 124.6 (9)
C2—H2⋯O1vi 0.910 (11) 2.552 (11) 3.1834 (8) 127.0 (9)
C2—H2⋯O3iv 0.910 (11) 2.570 (11) 3.1277 (8) 120.2 (9)
C3—H3⋯O6i 0.979 (12) 2.253 (12) 3.1170 (8) 146.6 (10)
C4—H4⋯O4v 0.926 (12) 2.559 (12) 3.4274 (8) 156.3 (10)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). In particular, diaminopyridines play an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen succinate (Fun & Balasubramani, 2009) and 4-amino-3-ammoniopyridinium dichloride (Qin & Wang, 2009) have been reported in the literature. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt is presented here.

The asymmetric unit of the title compound (Fig. 1) consists of a diprotonated 3,4-diaminopyridine cation and two nitrate anions. In the 3,4-diaminopyridinium cation, protonation at atom N1 has lead to a slight increase in the C2—N1—C3 angle to 121.45 (5)° compared to those of an unprotonated structure (Rubin-Preminger & Englert, 2007). The 3-amino N atom (N2) is also protonated. This type of protonation has also been observed in the crystal structure of 4-amino-3-ammoniopyridinium dichloride (Qin & Wang, 2009). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the anions and cations are connected by intermolecular strong N—H···O and weak C—H···O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by π···π interactions between the pyridinium rings (N1/C1–C5) [centroid-to-centroid (x, 3/2-y, -1/2+z and x, 3/2-y, 1/2+z) distance = 3.775 (4)Å].

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Abu Zuhri & Cox (1989). For related structures, see: Fun & Balasubramani (2009); Rubin-Preminger & Englert (2007); Qin & Wang (2009). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a hot methanol solution (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) was added a few drops of nitric acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.827 (13) - 0.934 (15)Å, C—H = 0.91 (11) - 0.978 (12) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
4-amino-3-ammoniopyridinium dinitrate top
Crystal data top
C5H9N32+·2NO3F(000) = 488
Mr = 235.17Dx = 1.707 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9066 reflections
a = 12.3008 (5) Åθ = 3.3–37.5°
b = 10.5086 (5) ŵ = 0.16 mm1
c = 7.1411 (3) ÅT = 100 K
β = 97.546 (1)°Block, colourless
V = 915.09 (7) Å30.65 × 0.37 × 0.28 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4796 independent reflections
Radiation source: fine-focus sealed tube4129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 37.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2120
Tmin = 0.906, Tmax = 0.958k = 1717
18234 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1242P]
where P = (Fo2 + 2Fc2)/3
4796 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C5H9N32+·2NO3V = 915.09 (7) Å3
Mr = 235.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3008 (5) ŵ = 0.16 mm1
b = 10.5086 (5) ÅT = 100 K
c = 7.1411 (3) Å0.65 × 0.37 × 0.28 mm
β = 97.546 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4129 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.958Rint = 0.024
18234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.06Δρmax = 0.66 e Å3
4796 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18671 (4)0.78615 (5)0.42895 (7)0.01262 (9)
N20.17802 (4)0.43778 (5)0.39491 (7)0.01067 (8)
N30.39285 (4)0.50229 (5)0.29631 (9)0.01537 (10)
C10.21985 (4)0.56747 (5)0.39298 (8)0.00969 (9)
C20.15309 (5)0.66472 (5)0.43549 (8)0.01097 (9)
C30.28652 (5)0.81587 (6)0.38180 (9)0.01366 (10)
C40.35654 (5)0.72296 (6)0.33967 (9)0.01302 (10)
C50.32559 (5)0.59285 (5)0.34337 (8)0.01084 (9)
N40.07181 (4)0.08353 (5)0.36523 (7)0.01101 (8)
O10.03294 (4)0.19166 (5)0.37605 (8)0.01831 (10)
O20.12811 (4)0.03373 (5)0.50656 (7)0.01704 (9)
O30.05534 (4)0.02013 (5)0.21333 (7)0.01419 (8)
N50.34927 (4)0.17325 (5)0.27032 (7)0.01208 (9)
O40.41357 (4)0.23657 (5)0.38374 (8)0.01818 (9)
O50.25728 (4)0.21885 (5)0.20404 (8)0.01714 (9)
O60.37509 (4)0.06465 (4)0.21848 (7)0.01541 (9)
H20.0849 (9)0.6508 (11)0.4677 (16)0.015 (2)*
H30.3044 (10)0.9065 (11)0.3781 (17)0.019 (3)*
H40.4245 (10)0.7452 (11)0.3072 (17)0.018 (2)*
H1N10.1431 (11)0.8483 (12)0.4515 (19)0.024 (3)*
H1N20.1923 (12)0.3916 (14)0.289 (2)0.036 (3)*
H2N20.1064 (11)0.4422 (13)0.393 (2)0.030 (3)*
H1N30.3832 (12)0.4256 (15)0.325 (2)0.036 (4)*
H2N30.4547 (10)0.5255 (11)0.2771 (18)0.022 (3)*
H3N20.2027 (10)0.3986 (12)0.4994 (17)0.022 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (2)0.00975 (18)0.01202 (19)0.00126 (15)0.00078 (15)0.00025 (14)
N20.01164 (19)0.00934 (17)0.01122 (19)0.00130 (14)0.00219 (15)0.00007 (14)
N30.0131 (2)0.0132 (2)0.0209 (2)0.00103 (16)0.00640 (18)0.00051 (17)
C10.01061 (19)0.00874 (19)0.00967 (19)0.00068 (14)0.00112 (15)0.00042 (15)
C20.0119 (2)0.0106 (2)0.0102 (2)0.00047 (15)0.00092 (16)0.00022 (15)
C30.0177 (2)0.0110 (2)0.0120 (2)0.00248 (17)0.00083 (18)0.00069 (17)
C40.0137 (2)0.0124 (2)0.0130 (2)0.00291 (17)0.00193 (17)0.00085 (16)
C50.0109 (2)0.0114 (2)0.0102 (2)0.00046 (15)0.00145 (16)0.00062 (16)
N40.01104 (18)0.01129 (18)0.01079 (18)0.00072 (14)0.00182 (14)0.00057 (14)
O10.0205 (2)0.01273 (19)0.0212 (2)0.00626 (15)0.00077 (17)0.00324 (15)
O20.0227 (2)0.0157 (2)0.01131 (18)0.00386 (16)0.00316 (16)0.00055 (14)
O30.01560 (19)0.01632 (19)0.01055 (17)0.00110 (14)0.00129 (14)0.00395 (14)
N50.01301 (19)0.01063 (18)0.0129 (2)0.00098 (14)0.00270 (15)0.00080 (14)
O40.0181 (2)0.0161 (2)0.0189 (2)0.00316 (15)0.00271 (16)0.00424 (16)
O50.01401 (19)0.0165 (2)0.0200 (2)0.00356 (15)0.00103 (15)0.00464 (16)
O60.0170 (2)0.00960 (17)0.0202 (2)0.00105 (13)0.00446 (16)0.00208 (14)
Geometric parameters (Å, º) top
N1—C21.3442 (7)C2—H20.910 (11)
N1—C31.3516 (8)C3—C41.3615 (9)
N1—H1N10.873 (13)C3—H30.978 (12)
N2—C11.4575 (7)C4—C51.4205 (8)
N2—H1N20.934 (15)C4—H40.926 (12)
N2—H2N20.881 (14)N4—O11.2392 (7)
N2—H3N20.871 (13)N4—O21.2603 (7)
N3—C51.3327 (8)N4—O31.2664 (7)
N3—H1N30.844 (16)N5—O41.2474 (7)
N3—H2N30.827 (13)N5—O61.2534 (7)
C1—C21.3698 (8)N5—O51.2623 (7)
C1—C51.4176 (8)
C2—N1—C3121.45 (5)C1—C2—H2122.4 (7)
C2—N1—H1N1120.3 (9)N1—C3—C4120.74 (5)
C3—N1—H1N1118.3 (9)N1—C3—H3116.5 (7)
C1—N2—H1N2111.9 (9)C4—C3—H3122.7 (7)
C1—N2—H2N2107.7 (9)C3—C4—C5120.48 (5)
H1N2—N2—H2N2108.1 (13)C3—C4—H4119.5 (7)
C1—N2—H3N2111.5 (8)C5—C4—H4120.1 (7)
H1N2—N2—H3N2111.5 (12)N3—C5—C1123.30 (5)
H2N2—N2—H3N2105.8 (12)N3—C5—C4120.39 (5)
C5—N3—H1N3120.6 (10)C1—C5—C4116.28 (5)
C5—N3—H2N3116.5 (8)O1—N4—O2120.45 (5)
H1N3—N3—H2N3118.9 (13)O1—N4—O3121.07 (5)
C2—C1—C5120.77 (5)O2—N4—O3118.47 (5)
C2—C1—N2118.22 (5)O4—N5—O6120.92 (5)
C5—C1—N2120.99 (5)O4—N5—O5120.11 (5)
N1—C2—C1120.29 (5)O6—N5—O5118.97 (5)
N1—C2—H2117.3 (7)
C3—N1—C2—C10.36 (9)N2—C1—C5—N30.09 (9)
C5—C1—C2—N10.63 (9)C2—C1—C5—C40.38 (8)
N2—C1—C2—N1177.64 (5)N2—C1—C5—C4177.85 (5)
C2—N1—C3—C40.16 (9)C3—C4—C5—N3177.88 (6)
N1—C3—C4—C50.40 (9)C3—C4—C5—C10.13 (9)
C2—C1—C5—N3178.32 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.874 (13)2.001 (13)2.7750 (7)147.0 (12)
N2—H1N2···O50.935 (14)2.105 (15)2.9070 (8)143.1 (12)
N2—H1N2···O2ii0.935 (14)2.211 (14)2.7767 (7)118.1 (11)
N2—H2N2···O3iii0.881 (14)2.193 (14)3.0006 (7)152.3 (12)
N2—H2N2···O3iv0.881 (14)2.482 (14)2.9231 (7)111.6 (11)
N3—H1N3···O40.844 (16)2.054 (16)2.8653 (8)161.0 (14)
N3—H2N3···O6v0.827 (12)2.130 (12)2.9442 (7)168.0 (12)
N2—H3N2···O5iv0.871 (12)1.963 (12)2.8227 (8)169.0 (12)
N2—H3N2···O6iv0.871 (12)2.494 (12)3.1217 (7)129.5 (10)
C2—H2···O3iii0.910 (11)2.439 (11)3.0489 (8)124.6 (9)
C2—H2···O1vi0.910 (11)2.552 (11)3.1834 (8)127.0 (9)
C2—H2···O3iv0.910 (11)2.570 (11)3.1277 (8)120.2 (9)
C3—H3···O6i0.979 (12)2.253 (12)3.1170 (8)146.6 (10)
C4—H4···O4v0.926 (12)2.559 (12)3.4274 (8)156.3 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H9N32+·2NO3
Mr235.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3008 (5), 10.5086 (5), 7.1411 (3)
β (°) 97.546 (1)
V3)915.09 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.65 × 0.37 × 0.28
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.906, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
18234, 4796, 4129
Rint0.024
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.06
No. of reflections4796
No. of parameters181
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.66, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.874 (13)2.001 (13)2.7750 (7)147.0 (12)
N2—H1N2···O50.935 (14)2.105 (15)2.9070 (8)143.1 (12)
N2—H1N2···O2ii0.935 (14)2.211 (14)2.7767 (7)118.1 (11)
N2—H2N2···O3iii0.881 (14)2.193 (14)3.0006 (7)152.3 (12)
N2—H2N2···O3iv0.881 (14)2.482 (14)2.9231 (7)111.6 (11)
N3—H1N3···O40.844 (16)2.054 (16)2.8653 (8)161.0 (14)
N3—H2N3···O6v0.827 (12)2.130 (12)2.9442 (7)168.0 (12)
N2—H3N2···O5iv0.871 (12)1.963 (12)2.8227 (8)169.0 (12)
N2—H3N2···O6iv0.871 (12)2.494 (12)3.1217 (7)129.5 (10)
C2—H2···O3iii0.910 (11)2.439 (11)3.0489 (8)124.6 (9)
C2—H2···O1vi0.910 (11)2.552 (11)3.1834 (8)127.0 (9)
C2—H2···O3iv0.910 (11)2.570 (11)3.1277 (8)120.2 (9)
C3—H3···O6i0.979 (12)2.253 (12)3.1170 (8)146.6 (10)
C4—H4···O4v0.926 (12)2.559 (12)3.4274 (8)156.3 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta. 11, 277–283.  CrossRef
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals
First citationFun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531–o1532.  Web of Science CSD CrossRef CAS IUCr Journals
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
First citationQin, J.-H. & Wang, J.-G. (2009). Acta Cryst. E65, o131.  Web of Science CSD CrossRef IUCr Journals
First citationRubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.  Web of Science CSD CrossRef IUCr Journals
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o639-o640
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds