metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­silver(I)]-μ-4,4′-bi­pyridine-κ2N:N′] 4-amino­benzoate nitrate hydrate]

aDepartment of Chemistry, Anshan Normal University, Anshan 114007, People's Republic of China
*Correspondence e-mail: yongmeizhang01@yahoo.cn

(Received 6 February 2010; accepted 8 February 2010; online 13 February 2010)

In the structure of the title compound, 2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2O, the AgI atom is three-coordinated in a T-shaped configuration by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) ligands at short distances and by one water O atom at a longer distance. Each bipy ligand bridges two neighbouring AgI atoms, forming a chain structure extending parallel to [101]. The complete 4-amino­benzoate anion, the nitrate anion and the uncoordinated water mol­ecule are located on mirror planes: together with the coordinated water mol­ecule, they form N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, stabilizing the crystal structure.

Related literature

For a related structure, see: Zhang et al. (2008[Zhang, Y.-M., Hou, D.-Y., Li, T.-C. & Xin, G. (2008). Acta Cryst. E64, m224.]).

[Scheme 1]

Experimental

Crystal data
  • 2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2O

  • Mr = 780.29

  • Monoclinic, P 21 /m

  • a = 8.2595 (4) Å

  • b = 17.3531 (8) Å

  • c = 9.9267 (4) Å

  • β = 103.231 (1)°

  • V = 1385.01 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.17 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.54, Tmax = 0.83

  • 7782 measured reflections

  • 2847 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.07

  • 2847 reflections

  • 230 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N3i 2.139 (2)
Ag1—N2 2.1444 (19)
Ag1—O1Wii 2.6799 (17)
N3i—Ag1—N2 172.70 (7)
N3i—Ag1—O1Wii 92.88 (6)
N2—Ag1—O1Wii 90.84 (6)
Symmetry codes: (i) x-1, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2Wiii 0.85 (4) 2.34 (2) 3.160 (5) 163
N1—H1B⋯O2iv 0.85 (4) 2.10 (4) 2.932 (4) 167
O1W—HW11⋯O1 0.85 (3) 1.91 (3) 2.747 (2) 172 (3)
O1W—HW12⋯O4 0.83 (3) 2.15 (3) 2.927 (3) 154 (3)
O2W—HW21⋯O1 0.85 (3) 2.14 (3) 2.979 (4) 169 (3)
O2W—HW22⋯O5v 0.86 (3) 2.30 (2) 3.084 (3) 151
O2W—HW22⋯O5vi 0.86 (3) 2.30 (2) 3.084 (3) 151
O2W—HW22⋯N4v 0.86 (3) 2.63 (3) 3.476 (4) 167
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x-1, y, z; (vi) [x-1, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Silver coordination polymers have received intense interests because of their interesting structural features and potential applications (Zhang et al., 2008). We report here the synthesis and structure of the title compound, [Ag2(C10H8N2)2(H2O)2].(C7H6NO2).NO3.H2O, (I).

In the crystal structure of compound (I), the AgI atom is three-coordinated by two nitrogen atoms from two symmetry-related bipy (bipy = 4,4'-bipyridine) ligands and one water water molecule in a T-shaped coordination configuration (Fig. 1). Each bipy ligand bridges two neighboring AgI atoms to form a chain structure along [101]. Further, L anions (L = 4-aminobenzoate), the nitrate anion, and the uncoordinated water molecule form N—H···O and O—H···O hydrogen bonds, stabilizing the structure of (I).

Related literature top

For a related structure, see: Zhang et al. (2008).

Experimental top

A mixture of AgNO3 (1 mmol), NaOH (0.040 g, 1 mmol) and 4-aminobenzoic acid (1 mmol) in water (15 ml) was stirred for 10 min at room temperature. Then 4,4'-bipyridine (1 mmol) was added to the solution with stirring for 30 min and a white precipitate was obtained. The precipitate was dissolved by dropwise addition of ammonia (5 M). Single crystals were obtained by slow evaporation of the solution at room temperature.

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The amino and water H atoms were located in a difference Fourier map, and were refined with a distance restraints of N—H = O—H = 0.85 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x-1, y, z-1; (ii) x, 1.5-y, z]
catena-Poly[[[aquasilver(I)]-µ-4,4'-bipyridine-κ2N:N')] 4-aminobenzoate nitrate hydrate] top
Crystal data top
2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2OF(000) = 780
Mr = 780.29Dx = 1.871 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2847 reflections
a = 8.2595 (4) Åθ = 2.1–26.1°
b = 17.3531 (8) ŵ = 1.48 mm1
c = 9.9267 (4) ÅT = 293 K
β = 103.231 (1)°Block, colourless
V = 1385.01 (11) Å30.24 × 0.21 × 0.17 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
2847 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.54, Tmax = 0.83k = 2117
7782 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.2523P]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max = 0.003
230 parametersΔρmax = 0.34 e Å3
8 restraintsΔρmin = 0.38 e Å3
Crystal data top
2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2OV = 1385.01 (11) Å3
Mr = 780.29Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.2595 (4) ŵ = 1.48 mm1
b = 17.3531 (8) ÅT = 293 K
c = 9.9267 (4) Å0.24 × 0.21 × 0.17 mm
β = 103.231 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2390 reflections with I > 2σ(I)
Tmin = 0.54, Tmax = 0.83Rint = 0.024
7782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0238 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
2847 reflectionsΔρmin = 0.38 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9046 (4)0.75000.9999 (4)0.0234 (8)
C20.7795 (4)0.75001.0736 (4)0.0216 (7)
H20.80820.75001.16980.026*
C30.6139 (4)0.75001.0056 (4)0.0201 (7)
H30.53310.75001.05730.024*
C40.5645 (4)0.75000.8621 (3)0.0198 (7)
C50.6902 (4)0.75000.7886 (4)0.0215 (7)
H50.66100.75000.69240.026*
C60.8556 (4)0.75000.8547 (4)0.0240 (8)
H60.93610.75000.80270.029*
C70.3820 (4)0.75000.7909 (3)0.0198 (7)
C80.6051 (3)0.95341 (14)0.7979 (2)0.0211 (5)
H80.59070.90990.74170.025*
C90.7206 (3)0.95076 (14)0.9219 (2)0.0203 (5)
H90.78220.90610.94770.024*
C100.7458 (3)1.01485 (13)1.0091 (2)0.0156 (5)
C110.6492 (3)1.07948 (14)0.9627 (2)0.0204 (5)
H110.66111.12381.01660.025*
C120.5365 (3)1.07780 (14)0.8371 (2)0.0219 (5)
H120.47391.12180.80820.026*
C131.0736 (3)0.94885 (15)1.3175 (2)0.0235 (5)
H131.12640.90311.35120.028*
C140.9522 (3)0.94648 (14)1.1975 (2)0.0238 (5)
H140.92410.89981.15230.029*
C150.8700 (3)1.01438 (13)1.1424 (2)0.0172 (5)
C160.9155 (3)1.08119 (14)1.2193 (2)0.0210 (5)
H160.86271.12761.18970.025*
C171.0384 (3)1.07876 (14)1.3392 (2)0.0231 (5)
H171.06641.12431.38830.028*
N11.0689 (4)0.75001.0676 (4)0.0366 (8)
N20.5122 (2)1.01603 (11)0.7543 (2)0.0180 (4)
N31.1201 (2)1.01423 (11)1.3889 (2)0.0206 (4)
N40.6731 (4)0.75000.3860 (3)0.0293 (7)
O10.3438 (3)0.75000.6599 (3)0.0305 (6)
O20.2780 (3)0.75000.8655 (2)0.0234 (5)
O1W0.4203 (2)0.62838 (10)0.50869 (19)0.0327 (4)
O2W0.0951 (4)0.75000.3901 (3)0.0499 (8)
O40.5190 (3)0.75000.3396 (3)0.0365 (7)
O50.7501 (3)0.68814 (12)0.4064 (2)0.0511 (6)
Ag10.32721 (2)1.014048 (12)0.563502 (18)0.02456 (8)
H1A1.099 (5)0.75001.155 (2)0.046 (14)*
H1B1.143 (4)0.75001.021 (4)0.044 (13)*
HW110.400 (4)0.6633 (16)0.562 (3)0.065*
HW120.448 (4)0.6508 (18)0.443 (2)0.065*
HW210.154 (4)0.75000.472 (3)0.065*
HW220.004 (3)0.75000.404 (4)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0206 (18)0.0152 (18)0.035 (2)0.0000.0080 (15)0.000
C20.0238 (18)0.0190 (18)0.0225 (18)0.0000.0064 (14)0.000
C30.0230 (18)0.0137 (17)0.0254 (18)0.0000.0093 (14)0.000
C40.0234 (18)0.0109 (17)0.0267 (19)0.0000.0089 (15)0.000
C50.032 (2)0.0118 (17)0.0234 (18)0.0000.0116 (15)0.000
C60.0270 (19)0.0154 (18)0.034 (2)0.0000.0171 (16)0.000
C70.0244 (18)0.0092 (16)0.0246 (19)0.0000.0033 (15)0.000
C80.0243 (13)0.0189 (13)0.0175 (12)0.0005 (10)0.0003 (10)0.0022 (10)
C90.0244 (13)0.0145 (12)0.0187 (12)0.0019 (10)0.0022 (10)0.0011 (10)
C100.0140 (11)0.0174 (12)0.0146 (11)0.0019 (9)0.0012 (9)0.0016 (9)
C110.0233 (13)0.0156 (12)0.0194 (12)0.0004 (9)0.0013 (10)0.0031 (9)
C120.0222 (12)0.0192 (13)0.0208 (12)0.0054 (10)0.0027 (10)0.0010 (10)
C130.0256 (13)0.0180 (13)0.0228 (13)0.0017 (10)0.0030 (10)0.0021 (10)
C140.0274 (13)0.0177 (13)0.0211 (12)0.0012 (10)0.0051 (10)0.0023 (10)
C150.0140 (11)0.0198 (12)0.0166 (12)0.0008 (9)0.0007 (9)0.0013 (9)
C160.0205 (12)0.0180 (13)0.0207 (12)0.0017 (10)0.0034 (10)0.0013 (10)
C170.0256 (13)0.0179 (13)0.0217 (13)0.0005 (10)0.0031 (10)0.0025 (10)
N10.0192 (17)0.051 (2)0.039 (2)0.0000.0064 (17)0.000
N20.0179 (10)0.0195 (10)0.0145 (10)0.0001 (8)0.0007 (8)0.0017 (8)
N30.0199 (10)0.0223 (11)0.0161 (10)0.0004 (9)0.0029 (8)0.0005 (8)
N40.0349 (19)0.035 (2)0.0175 (15)0.0000.0045 (14)0.000
O10.0278 (14)0.0388 (16)0.0232 (14)0.0000.0024 (11)0.000
O20.0211 (13)0.0210 (13)0.0287 (14)0.0000.0071 (11)0.000
O1W0.0407 (12)0.0278 (11)0.0273 (11)0.0025 (9)0.0030 (9)0.0029 (8)
O2W0.0302 (16)0.062 (2)0.051 (2)0.0000.0047 (14)0.000
O40.0275 (15)0.0436 (17)0.0352 (16)0.0000.0005 (12)0.000
O50.0491 (13)0.0414 (14)0.0585 (14)0.0149 (11)0.0034 (11)0.0173 (11)
Ag10.02136 (12)0.03052 (13)0.01619 (11)0.00025 (8)0.00732 (8)0.00028 (8)
Geometric parameters (Å, º) top
Ag1—N3i2.139 (2)C17—H170.9300
Ag1—N22.1444 (19)O1—C71.266 (4)
Ag1—O1Wii2.6799 (17)O2—C71.255 (4)
N2—C121.337 (3)N1—C11.369 (4)
N2—C81.344 (3)N1—H1A0.85 (4)
N3—C171.342 (3)N1—H1B0.85 (4)
N3—C131.346 (3)C1—C21.396 (5)
N3—Ag1iii2.139 (2)C1—C61.405 (5)
C8—C91.374 (3)C2—C31.380 (4)
C8—H80.9300C2—H20.9300
C9—C101.396 (3)C3—C41.389 (5)
C9—H90.9300C3—H30.9300
C10—C111.392 (3)C4—C51.399 (4)
C10—C151.477 (3)C4—C71.511 (4)
C11—C121.375 (3)C5—C61.373 (5)
C11—H110.9300C5—H50.9300
C12—H120.9300C6—H60.9300
C13—C141.371 (3)O4—N41.251 (4)
C13—H130.9300O5—N41.240 (2)
C14—C151.407 (3)N4—O5ii1.240 (2)
C14—H140.9300O1W—HW110.85 (2)
C15—C161.392 (3)O1W—HW120.85 (2)
C16—C171.377 (3)O2W—HW210.85 (2)
C16—H160.9300O2W—HW220.85 (2)
N3i—Ag1—N2172.70 (7)C17—C16—H16120.0
N3i—Ag1—O1Wii92.88 (6)C15—C16—H16120.0
N2—Ag1—O1Wii90.84 (6)N3—C17—C16123.6 (2)
C12—N2—C8117.1 (2)N3—C17—H17118.2
C12—N2—Ag1122.13 (15)C16—C17—H17118.2
C8—N2—Ag1120.71 (16)C1—N1—H1A122 (3)
C17—N3—C13116.8 (2)C1—N1—H1B119 (3)
C17—N3—Ag1iii122.74 (16)H1A—N1—H1B119 (3)
C13—N3—Ag1iii120.27 (16)N1—C1—C2120.8 (3)
N2—C8—C9122.9 (2)N1—C1—C6121.6 (3)
N2—C8—H8118.5C2—C1—C6117.6 (3)
C9—C8—H8118.5C3—C2—C1120.9 (3)
C8—C9—C10120.2 (2)C3—C2—H2119.5
C8—C9—H9119.9C1—C2—H2119.5
C10—C9—H9119.9C2—C3—C4121.8 (3)
C11—C10—C9116.4 (2)C2—C3—H3119.1
C11—C10—C15121.9 (2)C4—C3—H3119.1
C9—C10—C15121.7 (2)C3—C4—C5117.1 (3)
C12—C11—C10120.1 (2)C3—C4—C7120.4 (3)
C12—C11—H11120.0C5—C4—C7122.5 (3)
C10—C11—H11120.0C6—C5—C4121.8 (3)
N2—C12—C11123.3 (2)C6—C5—H5119.1
N2—C12—H12118.3C4—C5—H5119.1
C11—C12—H12118.3C5—C6—C1120.8 (3)
N3—C13—C14123.1 (2)C5—C6—H6119.6
N3—C13—H13118.4C1—C6—H6119.6
C14—C13—H13118.4O2—C7—O1124.2 (3)
C13—C14—C15120.3 (2)O2—C7—C4117.9 (3)
C13—C14—H14119.8O1—C7—C4117.9 (3)
C15—C14—H14119.8O5—N4—O5ii119.9 (3)
C16—C15—C14116.1 (2)O5—N4—O4120.02 (16)
C16—C15—C10122.1 (2)O5ii—N4—O4120.02 (16)
C14—C15—C10121.8 (2)HW11—O1W—HW12107 (3)
C17—C16—C15120.1 (2)HW21—O2W—HW22102 (3)
N3i—Ag1—N2—C1261.6 (6)C9—C10—C15—C149.2 (4)
N3i—Ag1—N2—C8116.0 (6)C14—C15—C16—C172.1 (4)
C12—N2—C8—C90.4 (3)C10—C15—C16—C17176.4 (2)
Ag1—N2—C8—C9177.37 (18)C13—N3—C17—C161.8 (4)
N2—C8—C9—C100.0 (4)Ag1iii—N3—C17—C16173.52 (19)
C8—C9—C10—C110.3 (3)C15—C16—C17—N30.1 (4)
C8—C9—C10—C15179.3 (2)N1—C1—C2—C3180.000 (2)
C9—C10—C11—C120.1 (3)C6—C1—C2—C30.000 (2)
C15—C10—C11—C12179.2 (2)C1—C2—C3—C40.000 (2)
C8—N2—C12—C110.6 (4)C2—C3—C4—C50.000 (2)
Ag1—N2—C12—C11177.15 (18)C2—C3—C4—C7180.000 (2)
C10—C11—C12—N20.3 (4)C3—C4—C5—C60.000 (2)
C17—N3—C13—C141.6 (4)C7—C4—C5—C6180.000 (1)
Ag1iii—N3—C13—C14173.80 (19)C4—C5—C6—C10.000 (2)
N3—C13—C14—C150.4 (4)N1—C1—C6—C5180.000 (2)
C13—C14—C15—C162.3 (4)C2—C1—C6—C50.000 (2)
C13—C14—C15—C10176.3 (2)C3—C4—C7—O20.000 (1)
C11—C10—C15—C169.7 (4)C5—C4—C7—O2180.000 (1)
C9—C10—C15—C16169.3 (2)C3—C4—C7—O1180.000 (1)
C11—C10—C15—C14171.8 (2)C5—C4—C7—O10.000 (1)
Symmetry codes: (i) x1, y, z1; (ii) x, y+3/2, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wiii0.85 (4)2.34 (2)3.160 (5)163
N1—H1B···O2iv0.85 (4)2.10 (4)2.932 (4)167
O1W—HW11···O10.85 (3)1.91 (3)2.747 (2)172 (3)
O1W—HW12···O40.83 (3)2.15 (3)2.927 (3)154 (3)
O2W—HW21···O10.85 (3)2.14 (3)2.979 (4)169 (3)
O2W—HW22···O5v0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···O5vi0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···N4v0.86 (3)2.63 (3)3.476 (4)167
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x1, y+3/2, z.

Experimental details

Crystal data
Chemical formula2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2O
Mr780.29
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)8.2595 (4), 17.3531 (8), 9.9267 (4)
β (°) 103.231 (1)
V3)1385.01 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.24 × 0.21 × 0.17
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.54, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
7782, 2847, 2390
Rint0.024
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.07
No. of reflections2847
No. of parameters230
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N3i2.139 (2)Ag1—O1Wii2.6799 (17)
Ag1—N22.1444 (19)
N3i—Ag1—N2172.70 (7)N2—Ag1—O1Wii90.84 (6)
N3i—Ag1—O1Wii92.88 (6)
Symmetry codes: (i) x1, y, z1; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wiii0.85 (4)2.34 (2)3.160 (5)162.6
N1—H1B···O2iv0.85 (4)2.10 (4)2.932 (4)166.5
O1W—HW11···O10.85 (3)1.91 (3)2.747 (2)172 (3)
O1W—HW12···O40.83 (3)2.15 (3)2.927 (3)154 (3)
O2W—HW21···O10.85 (3)2.14 (3)2.979 (4)169 (3)
O2W—HW22···O5v0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···O5vi0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···N4v0.86 (3)2.63 (3)3.476 (4)167
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x1, y+3/2, z.
 

Acknowledgements

The authors thank Anshan Normal University for support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, Y.-M., Hou, D.-Y., Li, T.-C. & Xin, G. (2008). Acta Cryst. E64, m224.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds