supplementary materials


bg2335 scheme

Acta Cryst. (2010). E66, o871-o872    [ doi:10.1107/S1600536810009554 ]

5,11,17,23-Tetrabromo-25,26,27,28-tetrakis(4-tolylsulfonyloxy)-2,8,14,20-tetrathiacalix[4]arene dichloromethane solvate

Y.-F. Chen, Y. Liu, J.-P. Ma and D.-S. Guo

Abstract top

In the crystal structure of the title compound, C52H36Br4O12S8·CH2Cl2, the thiacalix[4]arene unit adopts a 1,3-alternate conformation with an intramolecular C-H...O hydrogen bond and four C-H...[pi] interactions, with the four 4-MeC6H4SO3 groups located alternately above and below the virtual plane (R) defined by the four bridging S atoms. The benzene ring of each 4-MeC6H4SO3 unit is nearly perpendicular to one of the two neighboring phenol rings with interplanar angles varying from 72.97 (13) to 78.70 (13)°, while the dihedral angles between the plane (R) and the phenol rings range from 83.04 (7) to 84.30 (9)°. In the supramolecular structure, a solvent-bridged dimer composed of two main molecules is formed by four intermolecular C-H...O hydrogen bonds and locally creates an R44(26) motif. Such dimers associate further into chains by interdimer C-Cl...O short contacts [Cl...O 3.182 (5) Å]. Finally, these chains are linked into a two-dimensional network by a combination of interchain C-Br...O interactions [Br...O = 3.183 (3) and 2.966 (4) Å] as well as C-H...O hydrogen bonds.

Comment top

Thiacalix[4]arenes have attracted considerable interest in recent years as versatile scaffolds for highly organized receptors (Kumagai et al., 1997; Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Guo et al., 2007). Moreover, they are able to undergo electrophilic bromination at the upper rim and generate the corresponding dibromo or tetrabromo thiacalix[4]arene derivatives (Lhoták et al., 2001; Kasyan et al., 2003; Xu et al., 2008), which can be further applied to construct more elaborate receptors as well as novel supramolecular systems. We report here the crystal structure of a new tetrabromo thiacalix[4]arene derivative, 5,11,17,23-tetrabromo-25,26,27,28-tetrakis(4-toluenesulfonyloxy)-2,8,14,20-tetrathiacalix[4]arene dichloromethylene solvate.

In the crystal structure of the title compound, as shown in Fig. 1, the thiacalix[4]arene platform adopts a 1,3-alternate conformation in which the four 4-MeC6H4SO3 groups are located alternately above and below the virtual plane (R) defined by four bridging S atoms. The dihedral angles between the plane (R) and the phenol rings vary from 83.04 (7) to 84.30 (9)°. Such an arrangement is different from that of its analogue where four OCH2CO2Me moieties replace the four 4-MeC6H4SO3 units, possessing a partial cone conformation (Xu et al., 2008). Interestingly, four C—H···π interactions as well as one intramolecular C12—H12···O8 hydrogen bond (Table 1) in each thiacalix[4]arene molecule result in the benzene ring of each 4-MeC6H4SO3 group leaning aslant and being nearly perpendicular to one of both neighboring phenolic rings, with dihedral angles ranging from 72.97 (13) to 78.70 (13)°. The distances of H10···Cg1, H23···Cg2, H30···Cg3 and H41···Cg4 (Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings C14–C19, C1–C6, C51–C56 and C33–C38, respectively) are 2.749 (1), 2.654 (1), 2.795 (1) and 2.851 (1) Å , respectively, which are consistent with the calculations for such interactions conducted by Tsuzuki et al. (2000).

In the supramolecular structure, non-classical C—H···O hydrogen bonds (Table 1) and C—X···O (X = Cl, Br) short contacts (Lommerse et al. 1996; Metrangolo & Resnati, 2001) are observed. Pairs of the thiacalix[4]arene molecules are bridged by two dichloromethylene solvents with four intermolecular C—H···O hydrogen bonds and form a solvent-bridged centrosymmetric dimer (Fig. 2), locally creating an R44(26) motif (Bernstein et al., 1995) from atoms C53—H53A and C53—H53B at (x, y, z) and (-x, -y + 2, -z), respectively, acting as hydrogen-bond donors to atoms O5 at (-x + 1, -y +2, -z) and (x - 1, y, z), and O4 at (x - 1, y, z) and (-x + 1, -y +2, -z). Such dimers associate further into one-dimensional chains (Fig. 3), approximatively along the crystallographic b axis, by interdimer C53—Cl2···O1 short contacts (Metrangolo et al. 2001). Finally, these chains are linked into a two-dimensional network by a combination of interchain C11—Br1···O2 and C29—Br2···O1 interactions as well as C17—H17···O2 hydrogen bonds (Table 1). The separations between Cl2 and O1, Br1 at (-x + 1, y - 1/2, -z + 1/2) and O2, and Br2 at (-x + 1, y - 1/2, -z + 1/2) and O1 are 3.182 (5), 3.183 (3) and 2.966 (4) Å, respectively, which are shorter than the sum of the van derWaals radii of the halogen and O atoms (O = 1.52 Å, Br = 1.85 Å, Cl = 1.75 Å; Bondi, 1964).

Related literature top

For general background to the chemistry of thiacalix[4]arenes, see: Kumagai et al. (1997); Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006); Guo et al. (2007). For the synthesis and related structures, see: Lhoták et al. (2001); Kasyan et al. (2003); Xu et al. (2008). For C—H···π interactions, see: Tsuzuki et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—X···O (X = Cl, Br) short contacts, see: Lommerse et al. (1996); Metrangolo & Resnati (2001). For atomic radii, see: Bondi (1964).

Experimental top

A suspension of p-tetrabromothiacalix[4]arene (0.250 g, 0.308 mmol), anhydrous Cs2CO3 (0.610 g, 1.846 mmol) and p-toluenesulfonyl chloride (0.620 g, 3.078 mmol) in dry acetonitrile (15 ml) was refluxed for 20 h and cooled to room temperature. After removal of the volatile under reduced pressure, the residue was neutralized with 5% aqueous HCl and extracted with CH2Cl2. The organic layer was washed with saturated sodium hydrogen carbonate and brine, and dried over anhydrous MgSO4. After removal of the solvent under reduced pressure, the residue was purified by flash column chromatography (silica gel, ethyl acetate/hexane = 1:5, Rf = 0.5) to give the title compound in 58 % yield as a white solid. 1H NMR (300 MHz, CDCl3): δ 8.00 (d, 8H, J = 8.03 Hz), 7.51 (d, 8H, J = 8.00 Hz), 7.28 (s, 8H), 2.55 (s, 12H). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH3OH and CH2Cl2 at 273 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the hydrogen-bonded dimer of the title compound approximatively along the b axis with an R44(26) motif. Some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iv) -x, -y + 2, -z].
[Figure 3] Fig. 3. A view of the one-dimensional chain of the dimers approximatively along the b axis. Some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iv) -x, -y + 2, -z].
5,11,17,23-Tetrabromo-25,26,27,28-tetrakis(4-tolylsulfonyloxy)-2,8,14,20- tetrathiacalix[4]arene dichloromethane solvate top
Crystal data top
C52H36Br4O12S8·CH2Cl2F(000) = 3016
Mr = 1513.85Dx = 1.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7685 reflections
a = 12.6945 (14) Åθ = 2.4–26.5°
b = 20.793 (2) ŵ = 3.13 mm1
c = 23.190 (3) ÅT = 173 K
β = 103.350 (2)°Block, colourless
V = 5955.8 (12) Å30.30 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
11092 independent reflections
Radiation source: fine-focus sealed tube7807 reflections with I > 2σ(I)
graphiteRint = 0.039
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1015
Tmin = 0.453, Tmax = 0.705k = 2525
30976 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
11092 reflections(Δ/σ)max = 0.002
715 parametersΔρmax = 0.86 e Å3
6 restraintsΔρmin = 0.68 e Å3
Crystal data top
C52H36Br4O12S8·CH2Cl2V = 5955.8 (12) Å3
Mr = 1513.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6945 (14) ŵ = 3.13 mm1
b = 20.793 (2) ÅT = 173 K
c = 23.190 (3) Å0.30 × 0.21 × 0.12 mm
β = 103.350 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11092 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
7807 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.705Rint = 0.039
30976 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.86 e Å3
S = 1.06Δρmin = 0.68 e Å3
11092 reflectionsAbsolute structure: ?
715 parametersFlack parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43943 (3)1.109304 (19)0.27234 (2)0.04887 (13)
Br31.02769 (5)0.78011 (2)0.30945 (3)0.07916 (19)
Br40.95485 (4)0.83143 (2)0.11261 (3)0.07435 (18)
C10.7126 (4)0.72823 (17)0.15746 (18)0.0462 (10)
H10.75600.72130.19620.055*
C20.7437 (4)0.70462 (18)0.1088 (2)0.0532 (11)
H20.80950.68120.11420.064*
C30.6821 (4)0.7139 (2)0.0523 (2)0.0566 (12)
C40.5861 (4)0.7474 (2)0.0453 (2)0.0592 (13)
H40.54220.75360.00650.071*
C50.5526 (4)0.77185 (18)0.09320 (19)0.0499 (11)
H50.48630.79480.08780.060*
C60.6169 (3)0.76234 (16)0.14918 (17)0.0395 (9)
C70.7211 (5)0.6888 (3)0.0003 (2)0.0857 (18)
H7A0.70780.64240.00420.129*
H7B0.79880.69720.00560.129*
H7C0.68180.71060.03640.129*
C80.5929 (3)0.91727 (15)0.23204 (15)0.0294 (8)
C90.5510 (3)0.95961 (16)0.18624 (15)0.0289 (8)
C100.5032 (3)1.01623 (16)0.19828 (16)0.0320 (8)
H100.47441.04560.16730.038*
C110.4978 (3)1.02969 (16)0.25583 (17)0.0336 (8)
C120.5404 (3)0.98801 (16)0.30179 (16)0.0327 (8)
H120.53620.99810.34120.039*
C130.5890 (3)0.93175 (16)0.29019 (16)0.0315 (8)
C140.4205 (3)1.08761 (18)0.03965 (16)0.0368 (9)
H140.43551.05570.01330.044*
C150.3154 (3)1.1000 (2)0.04305 (18)0.0469 (10)
H150.25761.07770.01760.056*
C160.2926 (4)1.1446 (2)0.0831 (2)0.0539 (12)
C170.3775 (4)1.1780 (2)0.11757 (19)0.0545 (12)
H170.36291.20910.14460.065*
C180.4823 (4)1.16789 (19)0.11438 (17)0.0478 (10)
H180.53961.19180.13860.057*
C190.5034 (3)1.12220 (17)0.07513 (16)0.0329 (8)
C200.1768 (4)1.1552 (3)0.0878 (3)0.0891 (19)
H20A0.16731.13800.12560.134*
H20B0.12751.13310.05500.134*
H20C0.16071.20130.08570.134*
C210.7461 (3)1.01215 (16)0.12285 (14)0.0301 (8)
C220.6975 (3)0.95190 (17)0.11682 (15)0.0319 (8)
C230.7602 (3)0.89818 (17)0.11292 (16)0.0362 (9)
H230.72810.85670.10800.043*
C240.8693 (3)0.90537 (17)0.11629 (17)0.0399 (9)
C250.9191 (3)0.96488 (17)0.12485 (16)0.0354 (9)
H250.99480.96870.12800.043*
C260.8572 (3)1.01866 (16)0.12870 (15)0.0303 (8)
C270.9046 (3)1.10806 (16)0.21337 (16)0.0308 (8)
C280.8342 (3)1.15600 (16)0.22221 (16)0.0337 (8)
H280.79581.18100.18990.040*
C290.8207 (3)1.16681 (17)0.27889 (18)0.0385 (9)
C300.8731 (3)1.13048 (17)0.32628 (17)0.0373 (9)
H300.86191.13860.36470.045*
C310.9428 (3)1.08162 (16)0.31765 (15)0.0312 (8)
C320.9604 (3)1.07211 (15)0.26131 (15)0.0292 (8)
C331.2307 (3)0.99037 (18)0.30119 (17)0.0382 (9)
C341.2480 (3)0.9286 (2)0.2833 (2)0.0501 (11)
H341.21920.91570.24350.060*
C351.3071 (4)0.8862 (2)0.3234 (3)0.0652 (14)
H351.31840.84370.31110.078*
C361.3498 (4)0.9038 (3)0.3804 (2)0.0649 (14)
C371.3352 (4)0.9664 (3)0.39852 (19)0.0617 (13)
H371.36660.97930.43810.074*
C381.2746 (3)1.0102 (2)0.35870 (18)0.0491 (10)
H381.26361.05280.37080.059*
C391.4138 (5)0.8562 (3)0.4245 (3)0.0962 (19)
H39A1.36370.82770.43870.144*
H39B1.45840.87960.45810.144*
H39C1.46060.83060.40520.144*
C400.9434 (3)0.95975 (17)0.36111 (15)0.0347 (8)
C411.0005 (3)0.90881 (19)0.34477 (17)0.0423 (10)
H411.07360.91430.34220.051*
C420.9503 (4)0.85022 (19)0.33231 (18)0.0475 (11)
C430.8436 (3)0.84099 (18)0.33341 (17)0.0423 (10)
H430.81000.80040.32310.051*
C440.7854 (3)0.89146 (17)0.34975 (16)0.0350 (9)
C450.8365 (3)0.95058 (16)0.36448 (15)0.0330 (8)
C460.8028 (3)1.08666 (18)0.46528 (16)0.0371 (9)
C470.7283 (3)1.1358 (2)0.44931 (18)0.0463 (10)
H470.65651.12670.42800.056*
C480.7595 (4)1.1981 (2)0.46472 (19)0.0510 (11)
H480.70861.23200.45370.061*
C490.8637 (4)1.2122 (2)0.49601 (19)0.0519 (11)
C500.9368 (4)1.1623 (2)0.51078 (18)0.0512 (11)
H501.00861.17150.53190.061*
C510.9084 (3)1.0994 (2)0.49574 (17)0.0451 (10)
H510.95981.06560.50600.054*
C520.8968 (4)1.2802 (2)0.5135 (2)0.0706 (15)
H52A0.93421.28140.55550.106*
H52B0.83231.30760.50710.106*
H52C0.94541.29600.48940.106*
C530.2434 (4)0.9546 (2)0.0855 (2)0.0602 (12)
H53A0.30400.96360.06640.072*
H53B0.24420.98810.11600.072*
Cl10.12058 (11)0.95976 (7)0.03170 (6)0.0723 (4)
Cl20.26337 (14)0.88004 (7)0.11968 (7)0.0922 (5)
O31.1686 (2)1.10828 (12)0.27040 (13)0.0498 (7)
O41.1667 (2)1.02640 (14)0.19338 (12)0.0513 (7)
O50.6387 (2)1.07104 (15)0.01904 (12)0.0562 (8)
O60.6901 (2)1.16960 (14)0.07755 (16)0.0691 (10)
O70.8372 (2)0.96353 (13)0.48243 (11)0.0497 (7)
O80.6506 (2)1.00265 (14)0.44481 (12)0.0502 (7)
O90.6457 (2)0.86122 (10)0.21968 (10)0.0335 (6)
O101.03130 (18)1.02329 (11)0.25253 (10)0.0317 (5)
O110.68364 (19)1.06686 (11)0.12749 (10)0.0326 (6)
O120.77790 (19)1.00232 (11)0.38031 (10)0.0337 (6)
S10.57961 (10)0.79407 (4)0.21118 (5)0.0466 (3)
S20.55608 (7)0.94214 (4)0.11169 (4)0.0335 (2)
S30.63585 (8)1.10942 (5)0.06895 (5)0.0420 (2)
S40.92238 (8)1.09501 (4)0.14036 (4)0.0339 (2)
S51.15421 (7)1.04388 (4)0.25031 (4)0.0362 (2)
S61.01038 (8)1.03516 (5)0.37934 (4)0.0379 (2)
S70.76318 (8)1.00733 (5)0.44783 (4)0.0392 (2)
S80.64672 (8)0.88001 (4)0.35001 (4)0.0373 (2)
Br20.72092 (4)1.23092 (2)0.29012 (2)0.06032 (15)
O10.4687 (3)0.80924 (14)0.19888 (16)0.0672 (9)
O20.6272 (3)0.75471 (13)0.26017 (13)0.0712 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0508 (3)0.0352 (2)0.0657 (3)0.01028 (19)0.0236 (2)0.00070 (19)
Br30.0827 (4)0.0475 (3)0.1215 (5)0.0245 (3)0.0525 (4)0.0012 (3)
Br40.0645 (3)0.0421 (3)0.1291 (5)0.0083 (2)0.0485 (3)0.0082 (3)
C10.063 (3)0.0278 (19)0.042 (2)0.001 (2)0.001 (2)0.0005 (17)
C20.067 (3)0.032 (2)0.063 (3)0.008 (2)0.020 (2)0.005 (2)
C30.088 (4)0.036 (2)0.047 (3)0.004 (2)0.018 (3)0.009 (2)
C40.088 (4)0.039 (2)0.042 (3)0.010 (2)0.002 (2)0.008 (2)
C50.055 (3)0.032 (2)0.056 (3)0.005 (2)0.000 (2)0.002 (2)
C60.052 (3)0.0226 (18)0.044 (2)0.0067 (18)0.0112 (19)0.0026 (16)
C70.137 (6)0.071 (3)0.058 (3)0.007 (4)0.039 (3)0.017 (3)
C80.0299 (19)0.0239 (17)0.035 (2)0.0016 (15)0.0095 (16)0.0010 (15)
C90.0266 (19)0.0302 (18)0.030 (2)0.0076 (15)0.0079 (15)0.0013 (15)
C100.0252 (19)0.0309 (19)0.040 (2)0.0003 (15)0.0080 (16)0.0081 (16)
C110.029 (2)0.0266 (18)0.047 (2)0.0013 (15)0.0130 (17)0.0020 (16)
C120.032 (2)0.0342 (19)0.034 (2)0.0020 (16)0.0124 (16)0.0034 (16)
C130.032 (2)0.0303 (19)0.034 (2)0.0035 (16)0.0101 (16)0.0032 (16)
C140.037 (2)0.042 (2)0.031 (2)0.0025 (18)0.0068 (17)0.0034 (17)
C150.040 (2)0.055 (3)0.042 (2)0.002 (2)0.0028 (19)0.006 (2)
C160.049 (3)0.064 (3)0.054 (3)0.017 (2)0.023 (2)0.020 (2)
C170.073 (3)0.052 (3)0.041 (3)0.026 (2)0.018 (2)0.000 (2)
C180.057 (3)0.044 (2)0.038 (2)0.007 (2)0.002 (2)0.0011 (19)
C190.032 (2)0.0336 (19)0.032 (2)0.0029 (16)0.0068 (16)0.0079 (16)
C200.060 (3)0.109 (5)0.108 (5)0.034 (3)0.040 (3)0.035 (4)
C210.035 (2)0.0316 (19)0.0241 (19)0.0019 (16)0.0073 (15)0.0024 (15)
C220.037 (2)0.037 (2)0.0225 (18)0.0049 (17)0.0066 (15)0.0025 (15)
C230.045 (2)0.0304 (19)0.037 (2)0.0047 (17)0.0159 (18)0.0014 (16)
C240.047 (2)0.034 (2)0.043 (2)0.0083 (18)0.0188 (19)0.0041 (17)
C250.035 (2)0.040 (2)0.034 (2)0.0008 (17)0.0138 (17)0.0012 (17)
C260.035 (2)0.0304 (18)0.0269 (19)0.0054 (16)0.0096 (15)0.0014 (15)
C270.031 (2)0.0266 (18)0.036 (2)0.0074 (15)0.0106 (16)0.0025 (15)
C280.034 (2)0.0278 (18)0.041 (2)0.0032 (16)0.0124 (17)0.0024 (16)
C290.033 (2)0.0295 (19)0.055 (3)0.0014 (16)0.0162 (19)0.0009 (18)
C300.039 (2)0.036 (2)0.039 (2)0.0001 (18)0.0154 (18)0.0060 (17)
C310.030 (2)0.0311 (18)0.032 (2)0.0011 (16)0.0057 (15)0.0013 (15)
C320.0292 (19)0.0236 (17)0.036 (2)0.0025 (15)0.0094 (16)0.0028 (15)
C330.032 (2)0.043 (2)0.042 (2)0.0081 (18)0.0144 (17)0.0014 (18)
C340.049 (3)0.047 (2)0.058 (3)0.005 (2)0.020 (2)0.000 (2)
C350.063 (3)0.053 (3)0.089 (4)0.021 (2)0.036 (3)0.016 (3)
C360.054 (3)0.079 (4)0.072 (4)0.028 (3)0.036 (3)0.033 (3)
C370.043 (3)0.107 (4)0.036 (3)0.009 (3)0.012 (2)0.010 (3)
C380.041 (2)0.062 (3)0.046 (3)0.005 (2)0.014 (2)0.005 (2)
C390.091 (4)0.111 (4)0.093 (4)0.030 (3)0.035 (3)0.044 (3)
C400.041 (2)0.037 (2)0.027 (2)0.0070 (17)0.0105 (16)0.0078 (16)
C410.041 (2)0.047 (2)0.043 (2)0.0112 (19)0.0201 (19)0.0078 (19)
C420.057 (3)0.039 (2)0.051 (3)0.020 (2)0.021 (2)0.0051 (19)
C430.057 (3)0.033 (2)0.039 (2)0.0083 (19)0.016 (2)0.0041 (17)
C440.041 (2)0.034 (2)0.031 (2)0.0066 (17)0.0105 (17)0.0056 (16)
C450.041 (2)0.0326 (19)0.0262 (19)0.0104 (17)0.0091 (16)0.0059 (15)
C460.040 (2)0.041 (2)0.033 (2)0.0027 (18)0.0123 (17)0.0044 (17)
C470.040 (2)0.052 (3)0.048 (3)0.005 (2)0.0128 (19)0.008 (2)
C480.053 (3)0.047 (2)0.057 (3)0.009 (2)0.022 (2)0.005 (2)
C490.064 (3)0.052 (3)0.048 (3)0.008 (2)0.029 (2)0.014 (2)
C500.043 (3)0.069 (3)0.042 (3)0.008 (2)0.010 (2)0.011 (2)
C510.050 (3)0.050 (2)0.034 (2)0.006 (2)0.0080 (19)0.0065 (19)
C520.084 (4)0.057 (3)0.077 (4)0.018 (3)0.032 (3)0.023 (3)
C530.063 (3)0.071 (3)0.054 (3)0.004 (3)0.028 (2)0.005 (2)
Cl10.0642 (8)0.0817 (9)0.0734 (9)0.0079 (7)0.0210 (7)0.0129 (7)
Cl20.1032 (12)0.0880 (10)0.0814 (11)0.0135 (9)0.0135 (8)0.0221 (8)
O30.0345 (16)0.0359 (15)0.079 (2)0.0035 (12)0.0133 (14)0.0007 (14)
O40.0414 (17)0.076 (2)0.0404 (16)0.0152 (15)0.0182 (13)0.0060 (14)
O50.0519 (18)0.087 (2)0.0340 (16)0.0226 (16)0.0194 (13)0.0147 (15)
O60.0445 (19)0.0490 (18)0.108 (3)0.0096 (15)0.0045 (17)0.0377 (18)
O70.064 (2)0.0514 (17)0.0335 (16)0.0069 (15)0.0114 (13)0.0064 (13)
O80.0486 (18)0.0607 (18)0.0476 (17)0.0062 (15)0.0242 (14)0.0130 (14)
O90.0419 (15)0.0242 (12)0.0362 (14)0.0009 (11)0.0124 (12)0.0009 (10)
O100.0299 (13)0.0293 (13)0.0365 (14)0.0017 (10)0.0088 (11)0.0030 (10)
O110.0349 (14)0.0299 (13)0.0316 (14)0.0035 (11)0.0047 (11)0.0047 (10)
O120.0375 (15)0.0351 (13)0.0298 (14)0.0077 (11)0.0106 (11)0.0000 (11)
S10.0672 (8)0.0267 (5)0.0518 (7)0.0111 (5)0.0257 (6)0.0016 (4)
S20.0339 (5)0.0351 (5)0.0306 (5)0.0054 (4)0.0057 (4)0.0000 (4)
S30.0364 (6)0.0448 (6)0.0452 (6)0.0024 (5)0.0104 (5)0.0167 (5)
S40.0348 (5)0.0349 (5)0.0333 (5)0.0059 (4)0.0106 (4)0.0016 (4)
S50.0310 (5)0.0398 (5)0.0397 (6)0.0021 (4)0.0124 (4)0.0005 (4)
S60.0362 (5)0.0461 (5)0.0315 (5)0.0035 (4)0.0082 (4)0.0009 (4)
S70.0444 (6)0.0439 (5)0.0321 (5)0.0015 (5)0.0146 (4)0.0026 (4)
S80.0449 (6)0.0352 (5)0.0335 (5)0.0013 (4)0.0127 (4)0.0074 (4)
Br20.0705 (3)0.0490 (3)0.0703 (3)0.0274 (2)0.0344 (3)0.0062 (2)
O10.058 (2)0.0509 (18)0.103 (3)0.0244 (16)0.0409 (19)0.0173 (18)
O20.140 (3)0.0304 (15)0.049 (2)0.0058 (18)0.034 (2)0.0075 (14)
Geometric parameters (Å, °) top
Br1—C111.888 (3)C30—C311.391 (5)
Br3—C421.900 (4)C30—H300.9500
Br4—C241.896 (4)C31—C321.389 (5)
C1—C21.370 (6)C31—S61.775 (4)
C1—C61.381 (5)C32—O101.403 (4)
C1—H10.9500C33—C341.382 (5)
C2—C31.376 (6)C33—C381.384 (5)
C2—H20.9500C33—S51.745 (4)
C3—C41.380 (7)C34—C351.373 (6)
C3—C71.510 (6)C34—H340.9500
C4—C51.377 (6)C35—C361.357 (7)
C4—H40.9500C35—H350.9500
C5—C61.379 (6)C36—C371.394 (7)
C5—H50.9500C36—C391.518 (7)
C6—S11.744 (4)C37—C381.395 (6)
C7—H7A0.9800C37—H370.9500
C7—H7B0.9800C38—H380.9500
C7—H7C0.9800C39—H39A0.9800
C8—C91.387 (5)C39—H39B0.9800
C8—C131.394 (5)C39—H39C0.9800
C8—O91.407 (4)C40—C411.385 (5)
C9—C101.382 (5)C40—C451.391 (5)
C9—S21.782 (3)C40—S61.787 (4)
C10—C111.381 (5)C41—C421.374 (6)
C10—H100.9500C41—H410.9500
C11—C121.383 (5)C42—C431.375 (6)
C12—C131.377 (5)C43—C441.386 (5)
C12—H120.9500C43—H430.9500
C13—S81.775 (4)C44—C451.395 (5)
C14—C151.378 (5)C44—S81.778 (4)
C14—C191.379 (5)C45—O121.404 (4)
C14—H140.9500C46—C471.383 (5)
C15—C161.389 (6)C46—C511.389 (6)
C15—H150.9500C46—S71.744 (4)
C16—C171.373 (6)C47—C481.378 (6)
C16—C201.515 (6)C47—H470.9500
C17—C181.365 (6)C48—C491.385 (6)
C17—H170.9500C48—H480.9500
C18—C191.384 (5)C49—C501.383 (6)
C18—H180.9500C49—C521.504 (6)
C19—S31.741 (4)C50—C511.380 (6)
C20—H20A0.9800C50—H500.9500
C20—H20B0.9800C51—H510.9500
C20—H20C0.9800C52—H52A0.9800
C21—C221.389 (5)C52—H52B0.9800
C21—C261.391 (5)C52—H52C0.9800
C21—O111.405 (4)C53—Cl21.734 (5)
C22—C231.387 (5)C53—Cl11.760 (5)
C22—S21.783 (4)C53—H53A0.9900
C23—C241.378 (5)C53—H53B0.9900
C23—H230.9500O3—S51.416 (3)
C24—C251.383 (5)O4—S51.413 (3)
C25—C261.382 (5)O5—S31.413 (3)
C25—H250.9500O6—S31.420 (3)
C26—S41.782 (3)O7—S71.417 (3)
C27—C281.385 (5)O8—S71.418 (3)
C27—C321.390 (5)O9—S11.618 (2)
C27—S41.780 (4)O10—S51.630 (2)
C28—C291.383 (5)O11—S31.617 (2)
C28—H280.9500O12—S71.623 (2)
C29—C301.372 (5)S1—O11.407 (3)
C29—Br21.898 (3)S1—O21.417 (3)
C2—C1—C6118.8 (4)C34—C33—S5119.4 (3)
C2—C1—H1120.6C38—C33—S5119.9 (3)
C6—C1—H1120.6C35—C34—C33119.5 (4)
C1—C2—C3121.7 (4)C35—C34—H34120.2
C1—C2—H2119.1C33—C34—H34120.2
C3—C2—H2119.1C36—C35—C34121.3 (5)
C2—C3—C4118.4 (4)C36—C35—H35119.3
C2—C3—C7120.0 (5)C34—C35—H35119.3
C4—C3—C7121.6 (5)C35—C36—C37119.7 (4)
C5—C4—C3121.4 (4)C35—C36—C39120.8 (5)
C5—C4—H4119.3C37—C36—C39119.5 (5)
C3—C4—H4119.3C36—C37—C38120.1 (4)
C4—C5—C6118.8 (4)C36—C37—H37120.0
C4—C5—H5120.6C38—C37—H37120.0
C6—C5—H5120.6C33—C38—C37118.8 (4)
C5—C6—C1121.0 (4)C33—C38—H38120.6
C5—C6—S1120.5 (3)C37—C38—H38120.6
C1—C6—S1118.5 (3)C36—C39—H39A109.5
C3—C7—H7A109.5C36—C39—H39B109.5
C3—C7—H7B109.5H39A—C39—H39B109.5
H7A—C7—H7B109.5C36—C39—H39C109.5
C3—C7—H7C109.5H39A—C39—H39C109.5
H7A—C7—H7C109.5H39B—C39—H39C109.5
H7B—C7—H7C109.5C41—C40—C45119.3 (4)
C9—C8—C13120.7 (3)C41—C40—S6119.0 (3)
C9—C8—O9119.1 (3)C45—C40—S6121.6 (3)
C13—C8—O9120.1 (3)C42—C41—C40119.3 (4)
C10—C9—C8119.6 (3)C42—C41—H41120.4
C10—C9—S2119.0 (3)C40—C41—H41120.4
C8—C9—S2121.3 (3)C41—C42—C43122.1 (3)
C11—C10—C9119.4 (3)C41—C42—Br3119.6 (3)
C11—C10—H10120.3C43—C42—Br3118.2 (3)
C9—C10—H10120.3C42—C43—C44119.3 (4)
C10—C11—C12121.3 (3)C42—C43—H43120.3
C10—C11—Br1118.9 (3)C44—C43—H43120.3
C12—C11—Br1119.7 (3)C43—C44—C45119.2 (3)
C13—C12—C11119.7 (3)C43—C44—S8119.4 (3)
C13—C12—H12120.2C45—C44—S8121.5 (3)
C11—C12—H12120.2C40—C45—C44120.8 (3)
C12—C13—C8119.3 (3)C40—C45—O12119.5 (3)
C12—C13—S8119.0 (3)C44—C45—O12119.6 (3)
C8—C13—S8121.7 (3)C47—C46—C51121.1 (4)
C15—C14—C19118.9 (4)C47—C46—S7119.6 (3)
C15—C14—H14120.5C51—C46—S7119.4 (3)
C19—C14—H14120.5C48—C47—C46119.2 (4)
C14—C15—C16121.1 (4)C48—C47—H47120.4
C14—C15—H15119.4C46—C47—H47120.4
C16—C15—H15119.4C47—C48—C49121.2 (4)
C17—C16—C15118.0 (4)C47—C48—H48119.4
C17—C16—C20122.0 (5)C49—C48—H48119.4
C15—C16—C20120.0 (5)C50—C49—C48118.4 (4)
C18—C17—C16122.3 (4)C50—C49—C52120.6 (4)
C18—C17—H17118.8C48—C49—C52121.0 (4)
C16—C17—H17118.8C51—C50—C49121.9 (4)
C17—C18—C19118.7 (4)C51—C50—H50119.0
C17—C18—H18120.7C49—C50—H50119.0
C19—C18—H18120.7C50—C51—C46118.3 (4)
C14—C19—C18120.9 (4)C50—C51—H51120.9
C14—C19—S3119.3 (3)C46—C51—H51120.9
C18—C19—S3119.7 (3)C49—C52—H52A109.5
C16—C20—H20A109.5C49—C52—H52B109.5
C16—C20—H20B109.5H52A—C52—H52B109.5
H20A—C20—H20B109.5C49—C52—H52C109.5
C16—C20—H20C109.5H52A—C52—H52C109.5
H20A—C20—H20C109.5H52B—C52—H52C109.5
H20B—C20—H20C109.5Cl2—C53—Cl1113.0 (3)
C22—C21—C26121.0 (3)Cl2—C53—H53A109.0
C22—C21—O11119.5 (3)Cl1—C53—H53A109.0
C26—C21—O11119.4 (3)Cl2—C53—H53B109.0
C23—C22—C21119.0 (3)Cl1—C53—H53B109.0
C23—C22—S2119.2 (3)H53A—C53—H53B107.8
C21—C22—S2121.8 (3)C8—O9—S1118.8 (2)
C24—C23—C22119.6 (3)C32—O10—S5117.8 (2)
C24—C23—H23120.2C21—O11—S3119.2 (2)
C22—C23—H23120.2C45—O12—S7119.2 (2)
C23—C24—C25121.7 (3)O1—S1—O2120.9 (2)
C23—C24—Br4119.2 (3)O1—S1—O9107.33 (15)
C25—C24—Br4119.0 (3)O2—S1—O9106.71 (17)
C26—C25—C24119.0 (3)O1—S1—C6111.5 (2)
C26—C25—H25120.5O2—S1—C6107.20 (19)
C24—C25—H25120.5O9—S1—C6101.25 (15)
C25—C26—C21119.6 (3)C9—S2—C2299.98 (16)
C25—C26—S4118.6 (3)O5—S3—O6120.6 (2)
C21—C26—S4121.8 (3)O5—S3—O11107.63 (15)
C28—C27—C32119.7 (3)O6—S3—O11106.77 (17)
C28—C27—S4118.6 (3)O5—S3—C19111.19 (18)
C32—C27—S4121.7 (3)O6—S3—C19107.50 (18)
C29—C28—C27118.9 (3)O11—S3—C19101.35 (15)
C29—C28—H28120.5C27—S4—C2697.10 (15)
C27—C28—H28120.5O4—S5—O3121.12 (18)
C30—C29—C28121.9 (3)O4—S5—O10106.07 (15)
C30—C29—Br2119.5 (3)O3—S5—O10106.85 (14)
C28—C29—Br2118.5 (3)O4—S5—C33107.62 (17)
C29—C30—C31119.6 (3)O3—S5—C33111.79 (19)
C29—C30—H30120.2O10—S5—C33101.43 (15)
C31—C30—H30120.2C31—S6—C4099.90 (17)
C32—C31—C30119.0 (3)O7—S7—O8120.84 (18)
C32—C31—S6121.9 (3)O7—S7—O12107.23 (14)
C30—C31—S6119.1 (3)O8—S7—O12106.70 (15)
C31—C32—C27120.8 (3)O7—S7—C46111.01 (18)
C31—C32—O10119.2 (3)O8—S7—C46108.04 (17)
C27—C32—O10119.9 (3)O12—S7—C46101.15 (15)
C34—C33—C38120.6 (4)C13—S8—C4498.43 (16)
C6—C1—C2—C30.1 (6)C41—C42—C43—C442.5 (6)
C1—C2—C3—C40.8 (7)Br3—C42—C43—C44179.8 (3)
C1—C2—C3—C7178.1 (4)C42—C43—C44—C450.3 (5)
C2—C3—C4—C50.9 (7)C42—C43—C44—S8179.0 (3)
C7—C3—C4—C5178.0 (4)C41—C40—C45—C442.1 (5)
C3—C4—C5—C60.1 (6)S6—C40—C45—C44179.6 (3)
C4—C5—C6—C10.9 (6)C41—C40—C45—O12179.2 (3)
C4—C5—C6—S1178.4 (3)S6—C40—C45—O122.5 (4)
C2—C1—C6—C51.0 (6)C43—C44—C45—C402.0 (5)
C2—C1—C6—S1178.3 (3)S8—C44—C45—C40176.7 (3)
C13—C8—C9—C101.2 (5)C43—C44—C45—O12179.1 (3)
O9—C8—C9—C10177.1 (3)S8—C44—C45—O120.4 (5)
C13—C8—C9—S2179.6 (3)C51—C46—C47—C480.9 (6)
O9—C8—C9—S23.6 (4)S7—C46—C47—C48178.2 (3)
C8—C9—C10—C110.1 (5)C46—C47—C48—C490.3 (6)
S2—C9—C10—C11179.2 (3)C47—C48—C49—C501.0 (6)
C9—C10—C11—C120.8 (5)C47—C48—C49—C52179.0 (4)
C9—C10—C11—Br1176.6 (3)C48—C49—C50—C510.6 (6)
C10—C11—C12—C130.3 (5)C52—C49—C50—C51179.4 (4)
Br1—C11—C12—C13176.0 (3)C49—C50—C51—C460.5 (6)
C11—C12—C13—C81.0 (5)C47—C46—C51—C501.3 (6)
C11—C12—C13—S8178.2 (3)S7—C46—C51—C50177.8 (3)
C9—C8—C13—C121.7 (5)C9—C8—O9—S199.3 (3)
O9—C8—C13—C12177.6 (3)C13—C8—O9—S184.7 (4)
C9—C8—C13—S8177.4 (3)C31—C32—O10—S599.5 (3)
O9—C8—C13—S81.5 (4)C27—C32—O10—S583.7 (3)
C19—C14—C15—C162.7 (6)C22—C21—O11—S397.4 (3)
C14—C15—C16—C172.6 (6)C26—C21—O11—S387.3 (3)
C14—C15—C16—C20177.3 (4)C40—C45—O12—S7100.4 (3)
C15—C16—C17—C181.1 (6)C44—C45—O12—S782.5 (4)
C20—C16—C17—C18178.8 (4)C8—O9—S1—O119.2 (3)
C16—C17—C18—C190.3 (6)C8—O9—S1—O2111.8 (3)
C15—C14—C19—C181.2 (5)C8—O9—S1—C6136.2 (3)
C15—C14—C19—S3177.2 (3)C5—C6—S1—O119.2 (4)
C17—C18—C19—C140.3 (6)C1—C6—S1—O1161.5 (3)
C17—C18—C19—S3178.7 (3)C5—C6—S1—O2153.7 (3)
C26—C21—C22—C234.1 (5)C1—C6—S1—O227.0 (4)
O11—C21—C22—C23179.3 (3)C5—C6—S1—O994.7 (3)
C26—C21—C22—S2177.9 (2)C1—C6—S1—O984.6 (3)
O11—C21—C22—S22.7 (4)C10—C9—S2—C22109.5 (3)
C21—C22—C23—C241.3 (5)C8—C9—S2—C2271.2 (3)
S2—C22—C23—C24179.4 (3)C23—C22—S2—C9109.9 (3)
C22—C23—C24—C251.5 (6)C21—C22—S2—C972.1 (3)
C22—C23—C24—Br4178.7 (3)C21—O11—S3—O518.4 (3)
C23—C24—C25—C261.6 (6)C21—O11—S3—O6112.4 (3)
Br4—C24—C25—C26178.8 (3)C21—O11—S3—C19135.2 (3)
C24—C25—C26—C211.2 (5)C14—C19—S3—O510.2 (3)
C24—C25—C26—S4179.5 (3)C18—C19—S3—O5168.2 (3)
C22—C21—C26—C254.0 (5)C14—C19—S3—O6144.2 (3)
O11—C21—C26—C25179.2 (3)C18—C19—S3—O634.2 (4)
C22—C21—C26—S4176.7 (3)C14—C19—S3—O11103.9 (3)
O11—C21—C26—S41.4 (4)C18—C19—S3—O1177.7 (3)
C32—C27—C28—C290.3 (5)C28—C27—S4—C26110.9 (3)
S4—C27—C28—C29179.4 (3)C32—C27—S4—C2669.9 (3)
C27—C28—C29—C301.5 (5)C25—C26—S4—C27111.9 (3)
C27—C28—C29—Br2178.2 (3)C21—C26—S4—C2768.8 (3)
C28—C29—C30—C310.6 (6)C32—O10—S5—O4118.6 (2)
Br2—C29—C30—C31177.3 (3)C32—O10—S5—O311.9 (3)
C29—C30—C31—C322.1 (5)C32—O10—S5—C33129.1 (2)
C29—C30—C31—S6179.8 (3)C34—C33—S5—O428.7 (4)
C30—C31—C32—C273.8 (5)C38—C33—S5—O4150.4 (3)
S6—C31—C32—C27178.5 (3)C34—C33—S5—O3164.0 (3)
C30—C31—C32—O10179.4 (3)C38—C33—S5—O315.1 (4)
S6—C31—C32—O101.7 (4)C34—C33—S5—O1082.5 (3)
C28—C27—C32—C313.0 (5)C38—C33—S5—O1098.4 (3)
S4—C27—C32—C31177.9 (3)C32—C31—S6—C4071.4 (3)
C28—C27—C32—O10179.7 (3)C30—C31—S6—C40110.9 (3)
S4—C27—C32—O101.2 (4)C41—C40—S6—C31110.3 (3)
C38—C33—C34—C351.6 (6)C45—C40—S6—C3171.5 (3)
S5—C33—C34—C35179.3 (3)C45—O12—S7—O713.5 (3)
C33—C34—C35—C360.5 (7)C45—O12—S7—O8117.3 (3)
C34—C35—C36—C371.1 (7)C45—O12—S7—C46129.9 (3)
C34—C35—C36—C39179.2 (4)C47—C46—S7—O7162.0 (3)
C35—C36—C37—C381.7 (7)C51—C46—S7—O717.1 (4)
C39—C36—C37—C38178.6 (4)C47—C46—S7—O827.4 (3)
C34—C33—C38—C371.0 (6)C51—C46—S7—O8151.7 (3)
S5—C33—C38—C37179.9 (3)C47—C46—S7—O1284.5 (3)
C36—C37—C38—C330.6 (6)C51—C46—S7—O1296.4 (3)
C45—C40—C41—C420.1 (5)C12—C13—S8—C44110.6 (3)
S6—C40—C41—C42178.2 (3)C8—C13—S8—C4468.6 (3)
C40—C41—C42—C432.4 (6)C43—C44—S8—C13112.0 (3)
C40—C41—C42—Br3179.7 (3)C45—C44—S8—C1366.6 (3)
Hydrogen-bond geometry (Å, °) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C14–C19, C1–C6, C51–C56 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O80.952.513.303 (5)141
C53—H53A···O5i0.992.383.175 (5)137
C53—H53B···O4ii0.992.373.249 (5)147
C17—H17···O2iii0.952.383.266 (5)155
C10—H10···Cg10.952.753.698 (1)178
C23—H23···Cg20.952.653.602 (1)176
C30—H30···Cg30.952.803.742 (1)174
C41—H41···Cg40.952.853.794 (1)172
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C14–C19, C1–C6, C51–C56 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O80.952.513.303 (5)141
C53—H53A···O5i0.992.383.175 (5)137
C53—H53B···O4ii0.992.373.249 (5)147
C17—H17···O2iii0.952.383.266 (5)155
C10—H10···Cg10.952.753.698 (1)178
C23—H23···Cg20.952.653.602 (1)176
C30—H30···Cg30.952.803.742 (1)174
C41—H41···Cg40.952.853.794 (1)172
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

Financial support from the National Natural Science Foundation of China (No. 20572064) and the Shandong Province Natural Science Foundation (Y2006B30) is gratefully acknowledged.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bondi, A. J. (1964). Chem. Phys. 68, 441–452.

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.

Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167–7170.

Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H. & Miyano, S. (1997). Tetrahedron Lett. 38, 3971–3972.

Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.

Lhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107–7110.

Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.

Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.

Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.

Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.

Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352.